Observable tertiary tides in TIC242132789

Author:

Gao Yan1,van Roestel Jan2ORCID,Green Matthew J3ORCID,Fuller Jim4ORCID,Grishin Evgeni56ORCID,Toonen Silvia2

Affiliation:

1. Institute for Gravitational Wave Astronomy & School of Physics and Astronomy, University of Birmingham , Edgbaston, Birmingham B15 2TT, UK

2. Anton Pannekoek Institute for Astronomy, University of Amsterdam , NL-1090 GE Amsterdam, the Netherlands

3. School of Physics and Astronomy, Tel-Aviv University , Tel-Aviv 6997801, Israel

4. TAPIR, California Institute of Technology , Mailcode 350-17, Pasadena, CA 91125, USA

5. School of Physics and Astronomy, Monash University , Clayton, VIC 3800, Australia

6. The ARC Centre of Excellence for Gravitational Wave Discovery – OzGrav , Clayton, VIC 3800, Australia

Abstract

ABSTRACT Many stars live in hierarchical triple systems, but the physics of such systems are still poorly understood. One understudied physical aspect of these systems is tertiary tides, wherein the tidal deformation of a tertiary in a hierarchical triple drains energy from the inner binary, causing the inner binary’s orbital separation to decrease. This tidal process is difficult to observe directly, since such an observation requires a very compact hierarchical triple, the tertiary of which must be almost large enough to fill its Roche lobe at the epoch of observation. Concurrently, the recently discovered stellar system TIC242132789 is the fourth most compact observed hierarchical triple, and the most compact in which the tertiary is a giant. In this paper, we demonstrate that TIC242132789 provides a rare opportunity to place constraints on the model parameters for tertiary tides, and can even be a rare opportunity to directly observe tertiary-tides-induced orbital shrinkage of the inner binary. We calculate our expectations of how fast the inner orbit will shrink, and demonstrate that our estimates of this rate of shrinkage should be observable using current techniques. We conclude with a call for relevant observations of this system to commence.

Funder

Royal Society

K. C. Wong Education Foundation

NWO

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Four new compact triply eclipsing triples found with Gaia and TESS;Monthly Notices of the Royal Astronomical Society;2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3