Optical and X-ray studies of three polars: RX J0859.1+0537, RX J0749.1–0549, and RX J0649.8–0737

Author:

Joshi Arti1,Pandey J C1ORCID,Raj Ashish2,Singh K P3,Anupama G C2,Singh H P4

Affiliation:

1. Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263 001, India

2. Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India

3. Indian Institute of Science Education and Research, Mohali 140306, India

4. Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India

Abstract

ABSTRACT We present optical photometric and spectroscopic observations, and an analysis of archival X-ray data of three polars: RX J0859.1+0537, RX J0749.1–0549, and RX J0649.8–0737. Optical light curves of these three polars reveal eclipse-like features that are deep, total, and variable in shape. The optical and X-ray modulations of RX J0859.1+0537, RX J0749.1–0549, and RX J0649.8–0737 are both found to occur at the orbital periods of 2.393 ± 0.003 h, 3.672 ± 0.001 h, and 4.347 ± 0.001 h, respectively. RX J0859.1+0537 is found to be a polar that lies in the region of the period gap, whereas RX J0749.1–0549 and RX J0649.8–0737 are found to be long-period polars above the period gap. The eclipse length is found to be 61 min for RX J0749.1–0549 in the Rband, which is the highest among the long-period eclipsing polars. The radius of the eclipsed light source is found to be more than the actual size of the white dwarf for these three systems, indicating that the eclipsed component is not only the white dwarf but also appears to include the presence of an extended accretion region. Optical spectra of these systems show the presence of high-ionization emission lines along with the strong Balmer emission lines with an inverted Balmer decrement. Cyclotron harmonics are also detected in the optical spectra from which we infer magnetic field strength of the surface of the white dwarf to be 49 ± 2 MG, 43.5 ± 1.4 MG, and 44 ± 1 MG for RX J0859.1+0537, RX J0749.1–0549, and RX J0649.8–0737, respectively.

Funder

Bundesministerium für Foschung und Technolgie

Max-Planck-Gesellschaft

Council of Scientific and Industrial Research

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3