Mass–radius relation for magnetized white dwarfs from SDSS

Author:

Karinkuzhi Drisya1,Mukhopadhyay Banibrata2ORCID,Wickramasinghe Dayal3ORCID,Tout Christopher A4ORCID

Affiliation:

1. Department of Physics, University of Calicut , Malappuram 673635 , India

2. Department of Physics, Indian Institute of Science , Bangalore 560012 , India

3. Mathematical Sciences Institute, The Australian National University , Canberra ACT 2601 , Australia

4. Institute of Astronomy, The Observatories , Medingley Road, Cambridge CB3 OHA , UK

Abstract

ABSTRACT We present the observational mass–radius (M–R) relation for a sample of 47 magnetized white dwarfs (WDs) with the magnetic field strength (B) ranging from 1 to 773 MG, identified from the SDSS data release 7 (DR7). We derive their effective temperature, surface gravity (log g), luminosity, radius, and mass. While atmospheric parameters are derived using a Virtual Observatory Spectral Energy Distribution Analyzer (VOSA), the mass is derived using their location in the HR diagram in comparison with the evolutionary tracks of different masses. We implement this mass measurement instead of a more traditional method of deriving masses from log g, which is unreliable as is based on SED and generates errors from other physical parameters involved. The main disadvantage of this method is that we need to assume a core composition of WDs. As it is complicated to identify the exact composition of these WDs from low-resolution spectra, we use tracks for the masses 0.2 to 0.4 M⊙ assuming a He-core, 0.5 to 1.0 M⊙ assuming CO core, and above M⊙ assuming O–Ne–Mg core. We compare the observed M–R relation with those predicted by the finite temperature model by considering different B, which are well in agreement considering their relatively low-surface fields, ≲109 G. Currently, there is no direct observational detection of magnetized WDs with B > 109 G. We propose that our model can be further extrapolated to higher B, which may indicate the existence of super-Chandrasekhar mass (M > 1.4 M⊙) WDs at higher B.

Funder

CSIR

Department of Science and Technology

MCIN

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3