X-ray observations of luminous dusty quasars at z > 2

Author:

Lansbury G B12ORCID,Banerji M13ORCID,Fabian A C1ORCID,Temple M J1ORCID

Affiliation:

1. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

2. European Southern Observatory, Karl-Schwarzschild str. 2, D-85748 Garching bei München, Germany

3. Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT We present new X-ray observations of luminous heavily dust-reddened quasars (HRQs) selected from infrared (IR) sky surveys. HRQs appear to be a dominant population at high redshifts and the highest luminosities, and may be associated with a transitional ‘blowout’ phase of black hole and galaxy co-evolution models. Despite this, their high-energy properties have been poorly known. We use the overall sample of 10 objects with XMM–Newton coverage to study the high-energy properties of HRQs at $\langle$Lbol$\rangle$ =1047.5 erg s−1 and $\langle$z$\rangle$ =2.5. For seven sources with strong X-ray detections, we perform spectral analyses. These find a median X-ray luminosity of $\left\langle L_{\rm 2\!-\!10\, keV} \right\rangle = 10^{45.1}$ erg s−1, comparable to the most powerful X-ray quasars known. The gas column densities are NH = (1–8) × 1022 cm−2, in agreement with the amount of dust extinction observed. The dust-to-gas ratios are sub-Galactic, but are higher than found in local AGN. The intrinsic X-ray luminosities of HRQs are weak compared to the mid-IR ($L_{\rm 6\, \mu m}$) and bolometric luminosities (Lbol), in agreement with findings for other luminous quasar samples. For instance, the X-ray to bolometric corrections range from κbol ≈ 50 to 3000. The moderate absorption levels and accretion rates close to the Eddington limit ($\langle$λEdd$\rangle$ =1.06) are in agreement with a quasar blowout phase. Indeed, we find that the HRQs lie in the forbidden region of the NH–λEdd plane, and therefore that radiation pressure feedback on the dusty interstellar medium may be driving a phase of blowout that has been ongoing for a few 105 yr. The wider properties, including [O iii] narrow-line region kinematics, broadly agree with this interpretation.

Funder

H2020 European Research Council

European Research Council

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3