Hotspots and photon rings in spherically symmetric space–times

Author:

Kocherlakota Prashant123ORCID,Rezzolla Luciano345ORCID,Roy Rittick6,Wielgus Maciek7ORCID

Affiliation:

1. Black Hole Initiative at Harvard University , 20 Garden St., Cambridge, MA 02138 , USA

2. Center for Astrophysics , Harvard and Smithsonian, 60 Garden St., Cambridge, MA 02138 , USA

3. Institut für Theoretische Physik, Goethe-Universität , Max-von-Laue-Str. 1, D-60438 Frankfurt , Germany

4. School of Mathematics , Trinity College, Dublin 2, D02 , Ireland

5. Frankfurt Institute for Advanced Studies , Ruth-Moufang-Str. 1, D-60438 Frankfurt , Germany

6. Anton Pannekoek Institute for Astronomy, University of Amsterdam , Science Park 904, NL-1098 XH Amsterdam , the Netherlands

7. Max-Planck-Institut für Radioastronomie , Auf dem Hügel 69, D-53121 Bonn , Germany

Abstract

ABSTRACT Future black hole (BH) imaging observations are expected to resolve finer features corresponding to higher order images of hotspots and of the horizon-scale accretion flow. In spherical space–times, the image order is determined by the number of half-loops executed by the photons that form it. Consecutive-order images arrive approximately after a delay time of ≈π times the BH shadow radius. The fractional diameters, widths, and flux-densities of consecutive-order images are exponentially demagnified by the lensing Lyapunov exponent, a characteristic of the space–time. The appearance of a simple point-sized hotspot when located at fixed spatial locations or in motion on circular orbits is investigated. The exact time delay between the appearance of its zeroth and first-order images agrees with our analytic estimate, which accounts for the observer inclination, with $\lesssim 20~{{\ \rm per\ cent}}$ error for hotspots located about ≲ 5M from a Schwarzschild BH of mass M. Since M87⋆ and Sgr A⋆ host geometrically thick accretion flows, we also explore the variation in the diameters and widths of their first-order images with disc scale-height. Using a simple ‘conical torus’ model, for realistic morphologies, we estimate the first-order image diameter to deviate from that of the shadow by $\lesssim 30~{{\ \rm per\ cent}}$ and its width to be ≲ 1.3M. Finally, the error in recovering the Schwarzschild lensing exponent (π), when using the diameters or the widths of the first and second-order images is estimated to be $\lesssim 20~{{\ \rm per\ cent}}$. It will soon become possible to robustly learn more about the space–time geometry of astrophysical BHs from such measurements.

Funder

Gordon and Betty Moore Foundation

John Templeton Foundation

NSF

ERC

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3