The nature of the Schönberg–Chandrasekhar limit

Author:

Ziółkowski Janusz1,Zdziarski Andrzej A1ORCID

Affiliation:

1. Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warszawa, Poland

Abstract

ABSTRACT We present a comprehensive description of the Schönberg–Chandrasekhar (S–C) transition, which is an acceleration of the stellar evolution from the nuclear to the thermal time scales occurring when the fractional mass of the helium core reaches a critical value, i.e. about 0.1. It occurs in the 1.4–7 $\, {\rm M}_{\odot }$ mass range due to impossibility of maintaining the thermal equilibrium after the nuclear energy sources in the core disappear. We present the distributions of the hydrogen abundance, the energy generation rate and the temperature for stars crossing that limit. We confirm that a sharp S–C limit is present for strictly isothermal cores, but it is much smoother for real stars. The way the boundary of the core is defined is important for the picture of this transition. With a strict definition of the core as the region where the helium abundance is close to null, it occurs in an extended range of the fractional core mass of roughly 0.03–0.11. The cause of that is a gradual core contraction causing a correspondingly gradual loss of the core isothermality with the increasing core mass. On the other hand, when using definitions allowing for some H abundance in the core, the S–C transition is found to be sharper, at the fractional core mass of between about 0.07 and 0.11. Still, it is more a smooth transition than a sharp limit. We have also searched for specific signatures of that transition, and found that it is associated with the stellar radius first decreasing and then increasing again. We have considered whether the S–C limit can be used as a diagnostic constraining the evolutionary status of accreting X-ray binaries, but found such uses unfounded.

Funder

Polish National Science Centre

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3