On the evolution of a twisted thin accretion disc in eccentric inclined supermassive binary black holes

Author:

Ivanov P B1,Zhuravlev V V2

Affiliation:

1. Astro Space Centre, P.N. Lebedev Physical Institute , 84/32 Profsoyuznaya Street, Moscow 117997 , Russia

2. Sternberg Astronomical Institute, Lomonosov Moscow State University , Universitetskij pr., 13, Moscow 119234 , Russia

Abstract

ABSTRACT We propose a model of a twisted accretion disc around a Kerr black hole interacting with a secondary black hole of a smaller mass on an inclined eccentric orbit. We use parameters of the system, which may be appropriate for the so-called precessing massive model of OJ 287. We calculate expressions for torque exerted on the disc by the secondary and a contribution of the secondary to the apsidal precession of disc elements by a double averaging procedure over the periods of the secondary and the disc elements. These expressions are used at all scales of interest, including the ones inside the binary orbit. We calculate numerically the evolution of the disc tilt and twist assuming a flat initial configuration. We consider the disc aspect ratio h/r = 10−3, a rather large viscosity parameter α = 0.1 and several values of the primary rotational parameter, χ. We find that, after a few periods of Lense–Thirring precession of the orbit, the disc relaxes to a quasi-stationary configuration in the precessing frame with a non-trivial distribution of the disc inclination angle, β, over the radial scale. We propose an analytic model for this configuration. We show that the presence of the twisted disc leads to multiple crossings of the disc by the secondary per one orbital period, with time periods between the crossings being different from the flat disc model. Our results should be taken into account in the modelling of OJ 287. They can also be applied to similar sources.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3