Directly detecting the envelopes of low-mass planets embedded in protoplanetary discs and the case for TW Hydrae

Author:

Zhu Zhaohuan12ORCID,Bailey Avery12ORCID,Macías Enrique3ORCID,Muto Takayuki4,Andrews Sean M5ORCID

Affiliation:

1. Department of Physics and Astronomy, University of Nevada , Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA

2. Nevada Center for Astrophysics, University of Nevada , Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154, USA

3. ESO Garching , Karl-Schwarzschild-Str. 2, D-85748 Garching bei Munchen, Germany

4. Division of Liberal Arts, Kogakuin University , 1-24-2 Nishi-Shinjyuku, Shinjyuku-ku, Tokyo 163-8677, Japan

5. Center for Astrophysics | Harvard & Smithsonian , 60 Garden St., Cambridge, MA 02138, USA

Abstract

ABSTRACT Despite many methods developed to find young massive planets in protoplanetary discs, it is challenging to directly detect low-mass planets that are embedded in discs. On the other hand, the core-accretion theory suggests that there could be a large population of embedded low-mass young planets at the Kelvin-Helmholtz (KH) contraction phase. We adopt both 1D models and 3D simulations to calculate the envelopes around low-mass cores (several to tens of M⊕) with different luminosities, and derive their thermal fluxes at radio wavelengths. We find that, when the background disc is optically thin at radio wavelengths, radio observations can see through the disc and probe the denser envelope within the planet’s Hill sphere. When the optically thin disc is observed with the resolution reaching one disc scale height, the radio thermal flux from the planetary envelope around a 10 M⊕ core is more than 10 per cent higher than the flux from the background disc. The emitting region can be extended and elongated. Finally, our model suggests that the au-scale clump at 52 au in the TW Hydrae disc revealed by ALMA is consistent with the envelope of an embedded 10–20 M⊕ planet, which can explain the detected flux, the spectral index dip, and the tentative spirals. The observation is also consistent with the planet undergoing pebble accretion. Future ALMA and ngVLA observations may directly reveal more such low-mass planets, enabling us to study core growth and even reconstruct the planet formation history using the embedded ‘protoplanet’ population.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3