Massive young stellar objects in the Local Group irregular galaxy NGC 6822 identified using machine learning

Author:

Kinson David A1ORCID,Oliveira Joana M1ORCID,van Loon Jacco Th1

Affiliation:

1. Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, UK

Abstract

ABSTRACT We present a supervised machine learning methodology to classify stellar populations in the Local Group dwarf-irregular galaxy NGC 6822. Near-IR colours (J − H, H − K, and J − K), K-band magnitudes and far-IR surface brightness (at 70 and 160 $\mu$m) measured from Spitzer and Herschel images are the features used to train a Probabilistic Random Forest (PRF) classifier. Point-sources are classified into eight target classes: young stellar objects (YSOs), oxygen- and carbon-rich asymptotic giant branch stars, red giant branch and red supergiant stars, active galactic nuclei, massive main-sequence stars, and Galactic foreground stars. The PRF identifies sources with an accuracy of ∼ 90 per cent across all target classes rising to ∼96 per cent for YSOs. We confirm the nature of 125 out of 277 literature YSO candidates with sufficient feature information, and identify 199 new YSOs and candidates. Whilst these are mostly located in known star-forming regions, we have also identified new star formation sites. These YSOs have mass estimates between ∼15 and 50 M⊙, representing the most massive YSO population in NGC 6822. Another 82 out of 277 literature candidates are definitively classified as non-YSOs by the PRF analysis. We characterize the star formation environment by comparing the spatial distribution of YSOs to those of gas and dust using archival images. We also explore the potential of using (unsupervised) t-distributed stochastic neighbour embedding maps for the identification of the same stellar population classified by the PRF.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3