Bayesian cosmic density field inference from redshift space dark matter maps

Author:

Bos E G Patrick12ORCID,Kitaura Francisco-Shu34,van de Weygaert Rien2

Affiliation:

1. Netherlands eScience Center, Science Park 140, 1098XG Amsterdam, the Netherlands

2. Kapteyn Astronomical Institute, University of Groningen, PO box 800, 9700AV Groningen, the Netherlands

3. Instituto de Astrofisica de Canarias (IAC), Calle Via Lactea s/n, 38200 La Laguna, Tenerife, Spain

4. Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206 La Laguna, Tenerife, Spain

Abstract

Abstract We present a self-consistent Bayesian formalism to sample the primordial density fields compatible with a set of dark matter density tracers after a cosmic evolution observed in redshift space. Previous works on density reconstruction did not self-consistently consider redshift space distortions or included an additional iterative distortion correction step. We present here the analytic solution of coherent flows within a Hamiltonian Monte Carlo posterior sampling of the primordial density field. We test our method within the Zel’dovich approximation, presenting also an analytic solution including tidal fields and spherical collapse on small scales. Our resulting reconstructed fields are isotropic and their power spectra are unbiased compared to the true field defined by our mock observations. Novel algorithmic implementations are introduced regarding the mass assignment kernels when defining the dark matter density field and optimization of the time-step in the Hamiltonian equations of motions. Our algorithm, dubbed barcode, promises to be specially suited for analysis of the dark matter cosmic web down to scales of a few megaparsecs. This large-scale structure is implied by the observed spatial distribution of galaxy clusters – such as obtained from X-ray, Sunyaev–Zel’dovich, or weak lensing surveys – as well as that of the intergalactic medium sampled by the Ly α forest or perhaps even by deep hydrogen intensity mapping. In these cases, virialized motions are negligible, and the tracers cannot be modelled as point-like objects. It could be used in all of these contexts as a baryon acoustic oscillation reconstruction algorithm.

Funder

International Astronomical Union

Universidade Nova de Lisboa

Center for Information Technology

University of Groningen

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3