Spectroscopic and imaging observations of transient hot and cool loops by IRIS and SDO

Author:

Gupta Girjesh R1ORCID,Nayak Sushree S12

Affiliation:

1. Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Badi Road, Udaipur 313001, India

2. Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India

Abstract

ABSTRACT Coronal loops are the basic building blocks of the solar atmosphere and are observed on various length scales. However, their formation mechanism is still unclear. In this paper, we present spectroscopic and imaging observations of small-scale transients and the subsequent formation of transient loops. For this purpose, we have utilized the multiwavelength observations recorded by the Atmospheric Imaging Assembly (AIA) and the Interface Region Imaging Spectrograph (IRIS) slit-jaw imager (SJI), along with spectroscopic measurements provided by IRIS. For the photospheric magnetic field data, we obtained line-of-sight magnetogram data provided by the Helioseismic and Magnetic Imager (HMI). Small-scale transients are simultaneously observed with several EUV and UV passbands of AIA and IRIS/SJI. The HMI magnetogram provides evidence of negative flux cancellations beneath these transients. Differential emission measure (DEM) analysis shows that one of the transients attains temperatures up to 8 MK whereas another one only reaches 0.4 MK. These transients further lead to the formation of small-scale loops with similar temperature distributions, thus termed hot and cool loops respectively. During the course of events, the IRIS slit was rastering the region and thus provided spectroscopic measurements at both transients and associated loops. This enabled us to perform in-depth investigations of the hot and cool loops. Using a density-sensitive O iv line pair, we obtained average electron densities along the hot and cool loops to be 1011.2 and 1010.8 cm−3 respectively. Energy estimates suggest that flux cancellation could easily power the hot transient, while it is insufficient for the cool transient. Lifetime estimates and magnetic field extrapolation suggest the presence of small-scale and fine structures within these loops. The results provide crucial ingredients for the physics of loop formation and the thermodynamics involved.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectroscopic diagnostic of the footpoints of the cool loops;Monthly Notices of the Royal Astronomical Society;2024-01-16

2. Detection of decayless oscillations in solar transition region loops;Astronomy & Astrophysics;2023-12-22

3. Direct Measurement of AIA 171 Coronal Loop Transparency;The Astrophysical Journal;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3