Producing a BOSS CMASS sample with DES imaging

Author:

Lee S12ORCID,Huff E M3,Ross A J1ORCID,Choi A1,Hirata C12,Honscheid K12,MacCrann N12,Troxel M A4,Davis C5ORCID,Eifler T F36,Cawthon R7,Elvin-Poole J12,Annis J8,Avila S9ORCID,Bertin E1011,Brooks D12,Carnero Rosell A1314ORCID,Carrasco Kind M1516,Carretero J17,da Costa L N1418,De Vicente J13,Desai S19,Flaugher B8,Fosalba P2021,García-Bellido J9,Gaztanaga E2021,Gerdes D W2223,Gruen D52425ORCID,Gruendl R A1516,Gschwend J1418,Gutierrez G8,Hollowood D L26,James D J27,Jeltema T26,Kuehn K28,Lima M1429,Maia M A G1418,Marshall J L30,Martini P131,Melchior P32ORCID,Menanteau F1516,Miller C J2223,Miquel R1733,Ogando R L C1418,Palmese A8ORCID,Plazas A A32ORCID,Sanchez E13,Scarpine V8,Schubnell M23,Serrano S2021,Sevilla-Noarbe I13,Smith M34,Soares-Santos M35ORCID,Sobreira F1436,Suchyta E37ORCID,Swanson M E C16,Tarle G23,Thomas D38ORCID,Weller J394041,Zuntz J42ORCID,

Affiliation:

1. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA

2. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

3. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

4. Department of Physics, Duke University, Durham, NC 27708, USA

5. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, PO Box 2450, Stanford, CA 94305, USA

6. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

7. Physics Department, University of Wisconsin-Madison, 2320 Chamberlin Hall, 1150 University Avenue, Madison, WI 53706-1390, USA

8. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA

9. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

10. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France

11. Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014, Paris, France

12. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK

13. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain

14. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

15. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

16. National Center for Supercomputing Applications, 1205 West Clark St, Urbana, IL 61801, USA

17. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain

18. Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

19. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

20. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

21. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

22. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

23. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

24. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

25. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

26. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

27. Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

28. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

29. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil

30. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

31. Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA

32. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

33. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

34. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

35. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA

36. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil

37. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

38. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK

39. Excellence Cluster Origins, Boltzmannstr 2, D-85748 Garching, Germany

40. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany

41. Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr 1, D-81679 München, Germany

42. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK

Abstract

ABSTRACT We present a sample of galaxies with the Dark Energy Survey (DES) photometry that replicates the properties of the BOSS CMASS sample. The CMASS galaxy sample has been well characterized by the Sloan Digital Sky Survey (SDSS) collaboration and was used to obtain the most powerful redshift-space galaxy clustering measurements to date. A joint analysis of redshift-space distortions (such as those probed by CMASS from SDSS) and a galaxy–galaxy lensing measurement for an equivalent sample from DES can provide powerful cosmological constraints. Unfortunately, the DES and SDSS-BOSS footprints have only minimal overlap, primarily on the celestial equator near the SDSS Stripe 82 region. Using this overlap, we build a robust Bayesian model to select CMASS-like galaxies in the remainder of the DES footprint. The newly defined DES-CMASS (DMASS) sample consists of 117 293 effective galaxies covering $1244\,\deg ^2$. Through various validation tests, we show that the DMASS sample selected by this model matches well with the BOSS CMASS sample, specifically in the South Galactic cap (SGC) region that includes Stripe 82. Combining measurements of the angular correlation function and the clustering-z distribution of DMASS, we constrain the difference in mean galaxy bias and mean redshift between the BOSS CMASS and DMASS samples to be $\Delta b = 0.010^{+0.045}_{-0.052}$ and $\Delta z = \left(3.46^{+5.48}_{-5.55} \right) \times 10^{-3}$ for the SGC portion of CMASS, and $\Delta b = 0.044^{+0.044}_{-0.043}$ and $\Delta z= (3.51^{+4.93}_{-5.91}) \times 10^{-3}$ for the full CMASS sample. These values indicate that the mean bias of galaxies and mean redshift in the DMASS sample are consistent with both CMASS samples within 1σ.

Funder

National Aeronautics and Space Administration

Simons Foundation

U.S. Department of Energy

National Science Foundation

Science and Technology Facilities Council

Higher Education Funding Council for England

University of Illinois

University of Chicago

Ohio State University

Texas A&M University

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Ministério da Ciência, Tecnologia e Inovação

Deutsche Forschungsgemeinschaft

University of California

University of Cambridge

University College London

University of Edinburgh

Lawrence Berkeley National Laboratory

University of Michigan

University of Nottingham

University of Pennsylvania

University of Portsmouth

Stanford University

University of Sussex

Ministerio de Economía y Competitividad

European Research Council

Seventh Framework Programme

Alfred P. Sloan Foundation

University of Arizona

Carnegie Mellon University

University of Florida

Harvard University

Johns Hopkins University

New Mexico State University

New York University

Pennsylvania State University

Princeton University

University of Tokyo

University of Utah

Vanderbilt University

University of Virginia

University of Washington

Yale University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Observational constraints on early dark energy;International Journal of Modern Physics D;2024-08

2. A Census of the 32 Ori Association with Gaia*;The Astronomical Journal;2022-09-21

3. Disks in Nearby Young Stellar Associations Found Via Virtual Reality;The Astrophysical Journal;2022-06-28

4. Coronal and Chromospheric Emission in A-type Stars;The Astronomical Journal;2022-06-14

5. OUP accepted manuscript;Monthly Notices of the Royal Astronomical Society;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3