Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation

Author:

Anau Montel Noemi1ORCID,Coogan Adam123,Correa Camila1ORCID,Karchev Konstantin14ORCID,Weniger Christoph1

Affiliation:

1. GRAPPA (Gravitation Astroparticle Physics Amsterdam), University of Amsterdam , Science Park 904, NL-1098 XH Amsterdam, the Netherlands

2. Département de Physique, Université de Montréal , 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada

3. Mila – Quebec AI Institute , 6666 St-Urbain, 200, Montreal, QC H2S 3H1, Canada

4. SISSA (Scuola Internazionale Superiore di Studi Avanzati) , via Bonomea 265, I-34136 Trieste, Italy

Abstract

ABSTRACT Precision analysis of galaxy–galaxy strong gravitational lensing images provides a unique way of characterizing small-scale dark matter haloes, and could allow us to uncover the fundamental properties of dark matter’s constituents. Recently, gravitational imaging techniques made it possible to detect a few heavy subhaloes. However, gravitational lenses contain numerous subhaloes and line-of-sight haloes, whose subtle imprint is extremely difficult to detect individually. Existing methods for marginalizing over this large population of subthreshold perturbers to infer population-level parameters are typically computationally expensive, or require compressing observations into hand-crafted summary statistics, such as a power spectrum of residuals. Here, we present the first analysis pipeline to combine parametric lensing models and a recently developed neural simulation-based inference technique called truncated marginal neural ratio estimation (TMNRE) to constrain the warm dark matter halo mass function cut-off scale directly from multiple lensing images. Through a proof-of-concept application to simulated data, we show that our approach enables empirically testable inference of the dark matter cut-off mass through marginalization over a large population of realistic perturbers that would be undetectable on their own, and over lens and source parameter uncertainties. To obtain our results, we combine the signal contained in a set of images with Hubble Space Telescope resolution. Our results suggest that TMNRE can be a powerful approach to put tight constraints on the mass of warm dark matter in the multi-keV regime, which will be relevant both for existing lensing data and in the large sample of lenses that will be delivered by near-future telescopes.

Funder

European Research Council

European Union

Netherlands eScience Center

NWO

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3