Modelling the light curve of Type IIn-P SN 2005cl with red supergiant progenitors featuring pre-SN outbursts

Author:

Li Chunhui1,Morozova Viktoriya12

Affiliation:

1. Department of Physics, The Pennsylvania State University , University Park, PA 16802-6300, USA

2. Institute for Gravitation and the Cosmos, The Pennsylvania State University , University Park, PA 16802-6300, USA

Abstract

ABSTRACT All Type IIn supernovae (SNe IIn) show narrow hydrogen emission lines in their spectra. Apart from this common feature, they demonstrate very broad diversity in brightness, duration, and morphology of their light curves, which indicates that they likely come from a variety of progenitor systems and explosion channels. A particular subset of SNe IIn, the so-called SNe IIn-P, exhibit ∼100 d plateau phases that are very similar to the ones of the ordinary hydrogen-rich SNe (SNe II). In the past, SNe IIn-P were explained by the models of sub-energetic electron capture explosions surrounded by dense extended winds. In this work, we attempt to explain this class of SNe with standard red supergiant progenitors that experience outbursts several months before the final explosion. The outburst energies that show the best agreement between our models and the data ($5\times 10^{46}\, {\rm erg}$) fall at the low range of the outburst energies that have been observed for SNe IIn (between few times $10^{46}\, {\rm erg}$ and $10^{49}\, {\rm erg}$). Instead, the inferred explosion energy of SN 2005cl is relatively high ($1{-}2\times 10^{51}\, {\rm erg}$) compared to the explosion energies of the ordinary SNe II. Our models provide alternative explanation of SNe IIn-P to the previously proposed scenarios.

Funder

Pennsylvania State University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3