Towards a non-Gaussian model of redshift space distortions

Author:

Cuesta-Lazaro Carolina12,Li Baojiu1ORCID,Eggemeier Alexander1,Zarrouk Pauline1,Baugh Carlton M12,Nishimichi Takahiro34,Takada Masahiro4

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

2. Institute for Data Science, Durham University, South Road, Durham DH1 3LE, UK

3. Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

4. Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Abstract

ABSTRACT To understand the nature of the accelerated expansion of the Universe, we need to combine constraints on the expansion rate and growth of structure. The growth rate is usually extracted from 3D galaxy maps by exploiting the effects of peculiar motions on galaxy clustering. However, theoretical models of the probability distribution function (PDF) of galaxy pairwise peculiar velocities are not accurate enough on small scales to reduce the error on theoretical predictions to the level required to match the precision expected for measurements from future surveys. Here, we improve the modelling of the pairwise velocity distribution by using the Skew-T PDF, which has non-zero skewness and kurtosis. Our model accurately reproduces the redshift space multipoles (monopole, quadrupole, and hexadecapole) predicted by N-body simulations, above scales of about $10\, h^{-1}{\rm Mpc}$. We illustrate how a Taylor expansion of the streaming model can reveal the contributions of the different moments to the clustering multipoles, which are independent of the shape of the velocity PDF. The Taylor expansion explains why the Gaussian streaming model works well in predicting the first two redshift space multipoles, although the velocity PDF is non-Gaussian even on large scales. Indeed, any PDF with the correct first two moments would produce precise results for the monopole down to scales of about $10\, h^{-1}{\rm Mpc}$, and for the quadrupole down to about $30\, h^{-1}{\rm Mpc}$. An accurate model for the hexadecapole needs to include higher order moments.

Funder

Science and Technology Facilities Council

H2020 European Research Council

Durham University

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3