Constraining ν-process production of fluorine through cosmic ray nucleosynthesis

Author:

Olive Keith A1,Vangioni Elisabeth2

Affiliation:

1. William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA

2. Sorbonne Université, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, F-75014 Paris, France

Abstract

ABSTRACT Fluorine is massive enough that it is not considered to be a light (Z ≤ 5) element, yet compared to its near neighbours, C, N, O, and Ne, it is far underproduced in the course of stellar evolution, making its origin more complex. In fact, the abundance of fluorine is the lowest among all elements between Z = 5 and 21 and is roughly 3–4 orders of magnitude below that of C, N, O, and Ne. There are several plausible sources for F beyond standard stellar evolution. These include the production in the asymptotic giant branch phase (AGB) in intermediate-mass stars, production in Wolf–Rayet stars, and the production through neutrino spallation in supernovae. The latter, known as the ν-process, is an important source for 11B, and may contribute to the abundance of 7Li as well. We combine a simple model of Galactic chemical evolution with a standard Galactic cosmic ray nucleosynthesis model to treat self-consistently the evolution of the Li, Be, and B isotopes. We include massive star production of F, as well as contributions from AGB stars, and the ν-process. Given the uncertainties in neutrino energies in supernovae, we normalize the ν-process using the observed 11B/10B ratio as a constraint. As a consequence, we are able to determine the relative importance of each contribution to the F abundance. We find that although the ν-process dominates at early times (low metallicity), the present-day F abundance is found to originate primarily from AGB stars.

Funder

LABEX

DOE

University of Minnesota

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Wolf–Rayet wind yields and nucleosynthesis of Helium stars;Monthly Notices of the Royal Astronomical Society;2024-08-07

2. Fluorine Abundances in Local Stellar Populations;The Astronomical Journal;2024-05-31

3. Stellar Population Astrophysics (SPA) with TNG;Astronomy & Astrophysics;2024-03

4. Nuclear Physics Constraints on Neutrino Astrophysics;Handbook of Nuclear Physics;2023

5. Neutrinos and Heavy Element Nucleosynthesis;Handbook of Nuclear Physics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3