Telluric absorption lines in the ALMA spectra of η Car

Author:

Abraham Zulema1ORCID,Beaklini Pedro P B2ORCID,Cox Pierre3,Falceta-Gonçalves Diego4,Nyman Lars-Åke5

Affiliation:

1. Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo Rua do Matão 1226 , CEP 05508-090 São Paulo, Brazil

2. National Radio Astronomy Observatory , 1003 Lopezville Road, Socorro, NM 87801, USA

3. Institut d’Astrophysique de Paris, Sorbonne Université , UPMC Université Paris 6 and CNRS, UMR 7095, 98bis boulevard Arago, F-75014 Paris, France

4. Escola de Artes, Ciências e Humanidades, Universidade de São Paulo , Rua Arlindo Bettio 1000, CEP 03828-000 São Paulo, Brazil

5. European Southern Observatory , Alonso de Córdoba 3107, Vitacura, 7630000, Chile

Abstract

ABSTRACT The massive binary system formed by η Car and an unknown companion is a strong source at millimetre and submillimetre wavelengths. Close to the stars, continuum bremsstrahlung and radio recombination lines originate in the massive ionized wind of η Car and in several compact sources of high density plasma. Molecular lines are also detected at these wavelengths, some of them are seen in absorption towards the continuum emission region, many of them revealed by ALMA observations. However, because the ALMA atmospheric calibration is performed in a low spectral resolution mode, telluric lines can still be present in some high-resolution spectra of scientific products, which could lead to a false identification of molecules. In this work, we explore three different sets of ALMA archive data of η Car, including high resolution (0.065 arcsec × 0.043 arcsec) observations recently published by our group, to verify which of these absorption lines are real and discuss their origin. We conclude that some of them truly originate in clouds close to the binary system, while others are artefacts of a faulty elimination of telluric lines during ALMA calibration procedure. We found that these absorption lines are not present in the phase calibrators because they are much weaker than η Car, where the absorption line appears because the high intensity continuum enhances the small individual systematic calibration errors.

Funder

ESO

NSF

NINS

NRC

MOST

KASI

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First Detection of Silicon-bearing Molecules in η Car;The Astrophysical Journal Letters;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3