Affiliation:
1. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
Abstract
ABSTRACT
We investigate the prospects for using the weak lensing bispectrum alongside the power spectrum to control systematic uncertainties in a Euclid-like survey. Three systematic effects are considered: the intrinsic alignment of galaxies, uncertainties in the means of tomographic redshift distributions, and multiplicative bias in the measurement of the shear signal. We find that the bispectrum is very effective in mitigating these systematic errors. Varying all three systematics simultaneously, a joint power spectrum and bispectrum analysis reduces the area of credible regions for the cosmological parameters Ωm and σ8 by a factor of 90 and for the two parameters of a time-varying dark energy equation of state by a factor of almost 20, compared with the baseline approach of using the power spectrum alone and of imposing priors consistent with the accuracy requirements specified for Euclid. We also demonstrate that including the bispectrum self-calibrates all three systematic effects to the stringent levels required by the forthcoming generation of weak lensing surveys, thereby reducing the need for external calibration data.
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献