Exciting the transit timing variation phases of resonant sub-Neptunes

Author:

Choksi Nick1ORCID,Chiang Eugene12

Affiliation:

1. Astronomy Department, Theoretical Astrophysics Center, and Center for Integrative Planetary Science, University of California Berkeley , Berkeley, CA 94720, USA

2. Department of Earth and Planetary Science, University of California , Berkeley, CA 94720, USA

Abstract

ABSTRACT There are excesses of sub-Neptunes just wide of period commensurabilities like the 3:2 and 2:1, and corresponding deficits narrow of them. Any theory that explains this period ratio structure must also explain the strong transit timing variations (TTVs) observed near resonance. Besides an amplitude and a period, a sinusoidal TTV has a phase. Often overlooked, TTV phases are effectively integration constants, encoding information about initial conditions or the environment. Many TTVs near resonance exhibit non-zero phases. This observation is surprising because dissipative processes that capture planets into resonance also damp TTV phases to zero. We show how both the period ratio structure and the non-zero TTV phases can be reproduced if pairs of sub-Neptunes capture into resonance in a gas disc while accompanied by a third eccentric non-resonant body. Convergent migration and eccentricity damping by the disc drives pairs to orbital period ratios wide of commensurability; then, after the disc clears, secular forcing by the third body phase shifts the TTVs. The scenario predicts that resonant planets are apsidally aligned and possess eccentricities up to an order of magnitude larger than previously thought.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tidal Dissipation Regimes among the Short-period Exoplanets;The Astrophysical Journal Letters;2023-11-23

2. Enhanced Size Uniformity for Near-resonant Planets;The Astrophysical Journal;2023-09-25

3. Dynamics and Origins of the Near-resonant Kepler Planets;The Astrophysical Journal;2023-04-28

4. When, where, and how many planets end up in first-order resonances?;Monthly Notices of the Royal Astronomical Society;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3