Affiliation:
1. Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
3. Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611, USA
Abstract
Abstract
Simulating the dust content of galaxies and their surrounding gas is challenging due to the wide range of physical processes affecting the dust evolution. Here we present cosmological hydrodynamical simulations of a cluster of galaxies, $M_\text{200,crit}=6 \times 10^{14}{\, \rm M_\odot }$, including a novel dust model for the moving mesh code arepo. This model includes dust production, growth, supernova-shock-driven destruction, ion-collision-driven thermal sputtering, and high-temperature dust cooling through far-infrared reradiation of collisionally deposited electron energies. Adopting a rather low thermal sputtering rate, we find, consistent with observations, a present-day overall dust-to-gas ratio of ∼2 × 10−5, a total dust mass of ${\sim } 2\times 10^9{\, \rm M_\odot }$, and a dust mass fraction of ∼3 × 10−6. The typical thermal sputtering time-scales within ${\sim } 100\, {\rm kpc}$ are around ${\sim } 10\, {\rm Myr}$, and increase towards the outer parts of the cluster to ${\sim } 10^3\, {\rm Myr}$ at a cluster-centric distance of $1\, {\rm Mpc}$. The condensation of gas-phase metals into dust grains reduces high-temperature metal-line cooling, but also leads to additional dust infrared cooling. The additional infrared cooling changes the overall cooling rate in the outer parts of the cluster, beyond ${\sim } 1\, {\rm Mpc}$, by factors of a few. This results in noticeable changes of the entropy, temperature, and density profiles of cluster gas once dust formation is included. The emitted dust infrared emission due to dust cooling is consistent with observational constraints.
Funder
National Aeronautics and Space Administration
National Sleep Foundation
U.S. Department of Energy
Smithsonian Astrophysical Observatory
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献