Dust in and around galaxies: dust in cluster environments and its impact on gas cooling

Author:

Vogelsberger Mark1ORCID,McKinnon Ryan1ORCID,O’Neil Stephanie1,Marinacci Federico12ORCID,Torrey Paul13ORCID,Kannan Rahul12

Affiliation:

1. Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

3. Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611, USA

Abstract

Abstract Simulating the dust content of galaxies and their surrounding gas is challenging due to the wide range of physical processes affecting the dust evolution. Here we present cosmological hydrodynamical simulations of a cluster of galaxies, $M_\text{200,crit}=6 \times 10^{14}{\, \rm M_\odot }$, including a novel dust model for the moving mesh code arepo. This model includes dust production, growth, supernova-shock-driven destruction, ion-collision-driven thermal sputtering, and high-temperature dust cooling through far-infrared reradiation of collisionally deposited electron energies. Adopting a rather low thermal sputtering rate, we find, consistent with observations, a present-day overall dust-to-gas ratio of ∼2 × 10−5, a total dust mass of ${\sim } 2\times 10^9{\, \rm M_\odot }$, and a dust mass fraction of ∼3 × 10−6. The typical thermal sputtering time-scales within ${\sim } 100\, {\rm kpc}$ are around ${\sim } 10\, {\rm Myr}$, and increase towards the outer parts of the cluster to ${\sim } 10^3\, {\rm Myr}$ at a cluster-centric distance of $1\, {\rm Mpc}$. The condensation of gas-phase metals into dust grains reduces high-temperature metal-line cooling, but also leads to additional dust infrared cooling. The additional infrared cooling changes the overall cooling rate in the outer parts of the cluster, beyond ${\sim } 1\, {\rm Mpc}$, by factors of a few. This results in noticeable changes of the entropy, temperature, and density profiles of cluster gas once dust formation is included. The emitted dust infrared emission due to dust cooling is consistent with observational constraints.

Funder

National Aeronautics and Space Administration

National Sleep Foundation

U.S. Department of Energy

Smithsonian Astrophysical Observatory

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3