AstroCLIP: a cross-modal foundation model for galaxies

Author:

Parker Liam1ORCID,Lanusse Francois12,Golkar Siavash1,Sarra Leopoldo1,Cranmer Miles3,Bietti Alberto1,Eickenberg Michael1,Krawezik Geraud1,McCabe Michael14,Morel Rudy1,Ohana Ruben1,Pettee Mariel15,Régaldo-Saint Blancard Bruno1,Cho Kyunghyun678,Ho Shirley169,

Affiliation:

1. The Flatiron Institute , 162 5th Ave, New York, NY 10010 , USA

2. CEA, CNRS, AIM, Université Paris-Saclay, Université Paris Cité , Paris 91190 , France

3. Department of Astronomy, University of Cambridge , Madingley Rd, Cambridge CB3 0HA , UK

4. Department of Computer Science, University of Colorado , Boulder, 430 UCB, 1111 Engineering Dr, Boulder, CO 80309 , USA

5. Lawrence Berkeley National Laboratory , Berkeley, 1 Cyclotron Rd, CA 94720 , USA

6. Center for Data Science, New York University , 60 5th Ave, New York, NY 10011 , USA

7. Prescient Design , Genentech, 149 5th Ave, New York, NY 10010 , USA

8. CIFAR Learning in Machines and Brains Fellow , Toronto, ON M5G 1M1 , Canada

9. Department of Astrophysics, Princeton University , 4 Ivy Lane, Princeton, NJ 08544 , USA

Abstract

ABSTRACT We present AstroCLIP, a single, versatile model that can embed both galaxy images and spectra into a shared, physically meaningful latent space. These embeddings can then be used – without any model fine-tuning – for a variety of downstream tasks including (1) accurate in-modality and cross-modality semantic similarity search, (2) photometric redshift estimation, (3) galaxy property estimation from both images and spectra, and (4) morphology classification. Our approach to implementing AstroCLIP consists of two parts. First, we embed galaxy images and spectra separately by pre-training separate transformer-based image and spectrum encoders in self-supervised settings. We then align the encoders using a contrastive loss. We apply our method to spectra from the Dark Energy Spectroscopic Instrument and images from its corresponding Legacy Imaging Survey. Overall, we find remarkable performance on all downstream tasks, even relative to supervised baselines. For example, for a task like photometric redshift prediction, we find similar performance to a specifically trained ResNet18, and for additional tasks like physical property estimation (stellar mass, age, metallicity, and specific-star-formation rate), we beat this supervised baseline by 19 per cent in terms of R2. We also compare our results with a state-of-the-art self-supervised single-modal model for galaxy images, and find that our approach outperforms this benchmark by roughly a factor of two on photometric redshift estimation and physical property prediction in terms of R2, while remaining roughly in-line in terms of morphology classification. Ultimately, our approach represents the first cross-modal self-supervised model for galaxies, and the first self-supervised transformer-based architectures for galaxy images and spectra.

Funder

U.S. Department of Energy Office of Science

Publisher

Oxford University Press (OUP)

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a science exocortex;Digital Discovery;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3