Impact of turbulence intensity and fragmentation velocity on dust particle size evolution and non-ideal magnetohydrodynamics effects

Author:

Kawasaki Yoshihiro1ORCID,Machida Masahiro N1

Affiliation:

1. Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University , Fukuoka 819-0395, Japan

Abstract

ABSTRACT We investigate the influence of dust particle size evolution on non-ideal magnetohydrodynamic (MHD) effects during the collapsing phase of star-forming cores, taking both the turbulence intensity in the collapsing cloud core and the fragmentation velocity of dust particles as parameters. When the turbulence intensity is small, the dust particles do not grow significantly, and the non-ideal MHD effects work efficiently in high-density regions. The dust particles rapidly grow in a strongly turbulent environment, while the efficiency of non-ideal MHD effects in such an environment depends on the fragmentation velocity of the dust particles. When the fragmentation velocity is small, turbulence promotes coagulation growth and collisional fragmentation of dust particles, producing small dust particles. In this case, the adsorption of charged particles on the dust particle surfaces becomes efficient and the abundance of charged particles decreases, making non-ideal MHD effects effective at high densities. On the other hand, when the fragmentation velocity is high, dust particles are less likely to fragment, even if the turbulence is strong. In this case, the production of small dust particles becomes inefficient and non-ideal MHD effects become less effective. We also investigate the effect of the dust composition on the star and disc formation processes. We constrain the turbulence intensity of a collapsing core and the fragmentation velocity of dust for circumstellar disc formation due to the dissipation of the magnetic field.

Funder

Japan Society for the Promotion of Science

JSPS

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3