QSO photometric redshifts using machine learning and neural networks

Author:

Curran S J1,Moss J P1,Perrott Y C1ORCID

Affiliation:

1. School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

Abstract

ABSTRACT The scientific value of the next generation of large continuum surveys would be greatly increased if the redshifts of the newly detected sources could be rapidly and reliably estimated. Given the observational expense of obtaining spectroscopic redshifts for the large number of new detections expected, there has been substantial recent work on using machine learning techniques to obtain photometric redshifts. Here, we compare the accuracy of the predicted photometric redshifts obtained from deep learning (DL) with the k-nearest neighbour (kNN) and the decision tree regression (DTR) algorithms. We find using a combination of near-infrared, visible, and ultraviolet magnitudes, trained upon a sample of Sloan Digital Sky Survey quasi-stellar objects, that the kNN and DL algorithms produce the best self-validation result with a standard deviation of σΔz = 0.24 (σΔz(norm) = 0.11). Testing on various subsamples, we find that the DL algorithm generally has lower values of σΔz, in addition to exhibiting a better performance in other measures. Our DL method, which uses an easy to implement off-the-shelf algorithm with neither filtering nor removal of outliers, performs similarly to other, more complex, algorithms, resulting in an accuracy of Δz < 0.1 up to z ∼ 2.5. Applying the DL algorithm trained on our 70 000 strong sample to other independent (radio-selected) data sets, we find σΔz ≤ 0.36 (σΔz(norm) ≤ 0.17) over a wide range of radio flux densities. This indicates much potential in using this method to determine photometric redshifts of quasars detected with the Square Kilometre Array.

Funder

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

National Aeronautics and Space Administration

Max-Planck-Gesellschaft

Higher Education Funding Council for England

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3