On the road to percent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity

Author:

Cataneo M1,Lombriser L12,Heymans C1,Mead A J34,Barreira A5,Bose S6ORCID,Li B7ORCID

Affiliation:

1. Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

2. Département de Physique Théorique, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève 4, Switzerland

3. Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada

4. ICC, Instituto de Ciencias del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona, Spain

5. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

6. Institute for Theory and Computation, Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

7. Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE, UK

Abstract

ABSTRACT We present a general method to compute the non-linear matter power spectrum for dark energy (DE) and modified gravity scenarios with per cent-level accuracy. By adopting the halo model and non-linear perturbation theory, we predict the reaction of a lambda cold dark matter (ΛCDM) matter power spectrum to the physics of an extended cosmological parameter space. By comparing our predictions to N-body simulations we demonstrate that with no-free parameters we can recover the non-linear matter power spectrum for a wide range of different w0–wa DE models to better than 1 per cent accuracy out to k ≈ 1 $h \,{\rm Mpc}^{-1}$. We obtain a similar performance for both DGP and f(R) gravity, with the non-linear matter power spectrum predicted to better than 3 per cent accuracy over the same range of scales. When including direct measurements of the halo mass function from the simulations, this accuracy improves to 1 per cent. With a single suite of standard ΛCDM N-body simulations, our methodology provides a direct route to constrain a wide range of non-standard extensions to the concordance cosmology in the high signal-to-noise non-linear regime.

Funder

European Research Council

Swiss National Science Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Science and Technology Facilities Council

University of Edinburgh

Horizon 2020

Harvard University

Durham University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3