A multitracer empirically driven approach to line-intensity mapping light cones

Author:

Sato-Polito Gabriela1,Kokron Nickolas2ORCID,Bernal José Luis13

Affiliation:

1. William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University , Baltimore, MD 21218 , USA

2. Kavli Institute for Particle Astrophysics and Cosmology and Department of Physics, Stanford University , Stanford, CA, 94305 , USA

3. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1, D-85748 Garching , Germany

Abstract

ABSTRACT Line-intensity mapping (LIM) is an emerging technique to probe the large-scale structure of the Universe. By targeting the integrated intensity of specific spectral lines, it captures the emission from all sources and is sensitive to the astrophysical processes that drive galaxy evolution. Relating these processes to the underlying distribution of matter introduces observational and theoretical challenges, such as observational contamination and highly non-Gaussian fields, which motivate the use of simulations to better characterize the signal. In this work we present skyline , a computational framework to generate realistic mock LIM observations that include observational features and foreground contamination, as well as a variety of self-consistent tracer catalogues. We apply our framework to generate realizations of LIM maps from the multidark planck 2 simulations coupled to the universemachine galaxy formation model. We showcase the potential of our scheme by exploring the voxel intensity distribution and the power spectrum of emission lines such as 21 cm, CO, [C ii], and Lyman-α, their mutual cross-correlations, and cross-correlations with galaxy clustering. We additionally present cross-correlations between LIM and submillimetre extragalactic tracers of large-scale structure such as the cosmic infrared background and the thermal Sunyaev-Zel’dovich effect, as well as quantify the impact of galactic foregrounds, line interlopers, and instrument noise on LIM observations. These simulated products will be crucial in quantifying the true information content of LIM surveys and their cross-correlations in the coming decade, and to develop strategies to overcome the impact of contaminants and maximize the scientific return from LIM experiments.

Funder

National Science Foundation

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3