Four-billion year stability of the Earth–Mars belt

Author:

Huang (黄宇坤) Yukun1ORCID,Gladman Brett1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada

Abstract

ABSTRACT Previous work has demonstrated orbital stability for 100 Myr of initially near-circular and coplanar small bodies in a region termed the ‘Earth–Mars belt’ from 1.08 < a < 1.28 au. Via numerical integration of 3000 particles, we studied orbits from 1.04–1.30 au for the age of the Solar system. We show that on this time-scale, except for a few locations where mean-motion resonances with Earth affect stability, only a narrower ‘Earth–Mars belt’ covering a ∼ (1.09, 1.17) au, e < 0.04, and I < 1° has over half of the initial orbits survive for 4.5 Gyr. In addition to mean-motion resonances, we are able to see how the ν3, ν4, and ν6 secular resonances contribute to long-term instability in the outer (1.17–1.30 au) region on Gyr time-scales. We show that all of the (rather small) near-Earth objects (NEOs) in or close to the Earth–Mars belt appear to be consistent with recently arrived transient objects by comparing to a NEO steady-state model. Given the <200 m scale of these NEOs, we estimated the Yarkovsky drift rates in semimajor axis and use these to estimate that a diameter of ∼100 km or larger would allow primordial asteroids in the Earth–Mars belt to likely survive. We conclude that only a few 100-km sized asteroids could have been present in the belt’s region at the end of the terrestrial planet formation.

Funder

Natural Sciences and Engineering Research Council of Canada

China Scholarship Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3