Ion acceleration to 100 keV by the ExB wave mechanism in collision-less shocks

Author:

Stasiewicz Krzysztof12ORCID,Eliasson Bengt3

Affiliation:

1. Space Research Centre, Polish Academy of Sciences, Warszawa 00-716, Poland

2. Department of Physics and Astronomy, University of Zielona Góra, Zielona Gora 05-091, Poland

3. SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK

Abstract

ABSTRACT It is shown that ions can be accelerated to about 100 keV in the direction perpendicular to the magnetic field by the ExB mechanism of electrostatic waves. The acceleration occurs in discrete steps of duration being a small fraction of the gyroperiod and can explain observations of ion energization to 10 keV at quasi-perpendicular shocks and to hundreds keV at quasi-parallel shocks. A general expression is provided for the maximum energy of ions accelerated in shocks of arbitrary configuration. The waves involved in the acceleration are related to three cross-field current-driven instabilities: the lower hybrid drift (LHD) instability induced by the density gradients in shocks and shocklets, followed by the modified two-stream (MTS) and electron cyclotron drift (ECD) instabilities, induced by the ExB drift of electrons in the strong LHD wave electric field. The ExB wave mechanism accelerates heavy ions to energies proportional to the atomic mass number, which is consistent with satellite observations upstream of the bow shock and also with observations of post-shocks in supernovae remnants. The results are compared with other acceleration mechanisms traditionally discussed in the literature.

Funder

Engineering and Physical Sciences Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3