Efficiently estimating mean, uncertainty, and unconstrained large-scale fraction of local Universe simulations with paired fixed fields

Author:

Sorce J G123

Affiliation:

1. Univ Lyon, ENS de Lyon, Univ Lyon1, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69007 Lyon, France

2. Univ Lyon, Univ Lyon1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230 Saint-Genis-Laval, France

3. Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract

ABSTRACT Provided a random realization of the cosmological model, observations of our cosmic neighbourhood now allow us to build simulations of the latter down to the non-linear threshold. The resulting local Universe models are thus accurate up to a given residual cosmic variance. Namely some regions and scales are apparently not constrained by the data and seem purely random. Drawing conclusions together with their uncertainties involves then statistics implying a considerable amount of computing time. By applying the constraining algorithm to paired fixed fields, this paper diverts the original techniques from their first use to efficiently disentangle and estimate uncertainties on local Universe simulations obtained with random fields. Paired fixed fields differ from random realizations in the sense that their Fourier mode amplitudes are fixed and they are exactly out of phase. Constrained paired fixed fields show that only 20 per cent of the power spectrum on large scales (> tens of megaparsecs) is purely random. Namely 80 per cent of it is partly constrained by the large-scale/ small-scale data correlations. Additionally, two realizations of our local environment obtained with paired fixed fields of the same pair constitute an excellent non-biased average or quasi-linear realization of the latter, namely the equivalent of hundreds of constrained simulations. The variance between these two realizations gives the uncertainty on the achievable local Universe simulations. These two simulations will permit enhancing faster our local cosmic web understanding thanks to a drastically reduced required computational time to appreciate its modelling limits and uncertainties.

Funder

College of Natural Resources and Sciences, Humboldt State University

California Earthquake Authority

Centre National d’Etudes Spatiales

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulating the LOcal Web (SLOW);Astronomy & Astrophysics;2023-09

2. Large-scale dark matter simulations;Living Reviews in Computational Astrophysics;2022-02-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3