A 21 cm pilot survey for pulsars and transients using the Focal L-Band Array for the Green Bank Telescope

Author:

Rajwade K M1,Agarwal D23ORCID,Lorimer D R23,Pingel N M234ORCID,Pisano D J23,Ruzindana M5,Jeffs B5,Warnick K F5,Roshi D A6,McLaughlin M A23

Affiliation:

1. Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL, UK

2. Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506, USA

3. Center for Gravitational Waves and Cosmology, Chestnut Ridge Research Building, West Virginia University, Morgantown, WV 26506, USA

4. Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

5. Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA

6. Arecibo Observatory, HC-3, Box 53995, Arecibo, PR 00612, USA

Abstract

Abstract Phased array feed (PAF) receivers are at the forefront of modern day radio astronomy. PAFs are currently being developed for spectral line and radio continuum surveys and to search for pulsars and fast radio bursts. Here, we present results of the pilot survey for pulsars and fast radio bursts using the Focal plane L-band Array for the Green Bank Telescope (FLAG) receiver operating in the frequency range of 1.3–1.5 GHz. With a system temperature of ∼18 K, the receiver provided unprecedented sensitivity to the survey over an instantaneous field of view (FoV) of 0.1 deg2. For the survey, we implemented both time and frequency domain search pipelines designed to find pulsars and fast radio bursts that were validated by test pulsar observations. Although no new sources were found, we were able to demonstrate the capability of this instrument from observations of known pulsars. We report an upper limit on the rate of fast radio bursts above a fluence of 0.36 Jy ms to be 1.3 × 106 events per day per sky. Using population simulations, we show that the FLAG will find a factor of 2–3 more pulsars in same survey duration compared to its single pixel counterpart at the Green Bank Telescope. We also demonstrate that the new phased array receiver, ALPACA for the Arecibo telescope, will be a superior survey instrument and will find pulsars at a higher rate than most contemporary receivers by a factor of 2–10.

Funder

National Science Foundation

European Research Council

Horizon 2020

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3