QPOML: a machine learning approach to detect and characterize quasi-periodic oscillations in X-ray binaries

Author:

Kiker Thaddaeus J123ORCID,Steiner James F4,Garraffo Cecilia4,Méndez Mariano5ORCID,Zhang Liang6ORCID

Affiliation:

1. Sunny Hills High School , 1801 Lancer Way, Fullerton, CA 92833 , USA

2. Department of Physics, Columbia University , New York, NY 10027 , USA

3. Earth Science Division, NASA Goddard Space Flight Center , Greenbelt, MD 20771 , USA

4. Center for Astrophysics | Harvard & Smithsonian , 60 Garden St. Cambridge, MA 02138 , USA

5. Kapteyn Astronomical Institute, University of Groningen , P.O. BOX 800, NL-9700 AV Groningen , the Netherlands

6. Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049 , China

Abstract

ABSTRACTAstronomy is presently experiencing profound growth in the deployment of machine learning to explore large data sets. However, transient quasi-periodic oscillations (QPOs) that appear in power density spectra of many X-ray binary (XRB) system observations are an intriguing phenomena heretofore not explored with machine learning. In light of this, we propose and experiment with novel methodologies for predicting the presence and properties of QPOs to make the first ever detections and characterizations of QPOs with machine learning models. We base our findings on raw energy spectra and processed features derived from energy spectra using an abundance of data from the NICER and Rossi X-ray Timing Explorer space telescope archives for two black hole low-mass XRB sources, GRS 1915+105 and MAXI J1535−571. We advance these non-traditional methods as a foundation for using machine learning to discover global inter-object generalizations between – and provide unique insights about – energy and timing phenomena to assist with the ongoing challenge of unambiguously understanding the nature and origin of QPOs. Additionally, we have developed a publicly available python machine learning library, QPOML, to enable further machine learning aided investigations into QPOs.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3