MeerKAT’s view of the bullet cluster 1E 0657-55.8

Author:

Sikhosana S P12ORCID,Knowles K34ORCID,Hilton M125,Moodley K12,Murgia M6ORCID

Affiliation:

1. Astrophysics Research Centre, University of KwaZulu-Natal , Durban 3696, South Africa

2. School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal , Westville Campus, Durban 4041, South Africa

3. Department of Physics and Electronics, Rhodes University , PO Box 94, Makhanda 6140, South Africa

4. South African Radio Astronomy Observatory , 2 Fir Street, Observatory, Cape Town 7405, South Africa

5. Wits Centre for Astrophysics, School of Physics, University of the Witwatersrand , Private Bag 3, Johannesburg 2050, South Africa

6. INAF-Osservatorio Astronomico di Cagliari , Via della Scienza 5, I-09047 Selargius, Italy

Abstract

ABSTRACT The Bullet cluster (1E 0657-55.8) is a massive merging system at redshift z = 0.296, known to host a powerful radio halo and a relic. Here we present high fidelity MeerKAT L-band (0.9–1.7 GHz) observations of the Bullet cluster, where we trace a larger extent of both the halo and relic in comparison to previous studies. The size of the recovered halo is 1.6 Mpc × 1.3 Mpc and the largest linear size of the relic is ∼988 kpc. We detect a new decrement feature on the southern outskirts of the halo emission, where a region appears to have a lower surface brightness in comparison to its surroundings. The larger extension on the outskirts of the halo is faint, which suggests lower relativistic electron density or a weaker magnetic field. An in-band spectral index map of the halo reveals radial steepening towards the edges, likely due to synchrotron electron ageing. The integrated spectral index of the radio halo is 1.1 ± 0.2. We perform a radio−X-ray surface brightness point-to-point analysis, which reveals a linear correlation for the radio halo. This indicates that the halo emission is produced by primary re-acceleration mechanisms. Finally, we derive a radio Mach number of $\mathcal {M}_R$ = 4.6 ± 0.9 for the relic shock region, which is higher than the Mach number inferred by earlier analyses based on X-ray data. Discrepancies between radio and X-ray Mach numbers have been observed for multiple systems, studies suggest that this is due to various factors, including relic orientation.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3