Day and night: habitability of tidally locked planets with sporadic rotation

Author:

Shakespeare Cody J1ORCID,Steffen Jason H1

Affiliation:

1. Department of Physics and Astronomy, University of Nevada , Las Vegas, 4505 S. Maryland Pkwy, Las Vegas NV 89154, USA

Abstract

ABSTRACT Tidally locked worlds provide a unique opportunity for constraining the probable climates of certain exoplanets. They are unique in that few exoplanet spin and obliquity states are known or will be determined in the near future: both of which are critical in modelling climate. A recent study shows the dynamical conditions present in the TRAPPIST-1 system make rotation and large librations of the substellar point possible for these planets, which are usually assumed to be tidally locked. We independently confirm the tendency for planets in TRAPPIST-1-like systems to sporadically transition from tidally locked libration to slow rotation using N-body simulations. We examine the nature and frequency of these spin states to best inform energy balance models which predict the temperature profile of the planet’s surface. Our findings show that tidally locked planets with sporadic rotation are able to be in both long-term persistent states and states with prolonged transient behaviour: where frequent transitions between behaviours occur. Quasi-stable spin regimes, where the planet exhibits one spin behaviour for up to hundreds of millennia, are likely able to form stable climate systems while the spin behaviour is constant. 1D energy balance models show that tidally locked planets with sporadic rotation around M-dwarfs will experience a relatively small change in substellar temperature due to the lower albedo of ice in an infrared dominant stellar spectrum. The exact effects of large changes in temperature profiles on these planets as they rotate require more robust climate models, like 3D global circulation models, to better examine.

Funder

NSF

National Aeronautics and Space Administration

Nevada Space Grant Consortium

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spin Dynamics of Planets in Resonant Chains;The Astrophysical Journal;2024-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3