Saturation of large-scale dynamo in anisotropically forced turbulence

Author:

Bhat Pallavi12

Affiliation:

1. International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India

2. Department of Applied Mathematics, University of Leeds, Leeds, UK, LS29JT

Abstract

Abstract Turbulent dynamo theories have faced difficulties in obtaining evolution of large-scale magnetic fields on short dynamical time-scales due to the constraint imposed by magnetic helicity balance. This has critical implications for understanding the large-scale magnetic field evolution in astrophysical systems like the Sun, stars and galaxies. Direct numerical simulations (DNS) in the past with isotropically forced helical turbulence have shown that large-scale dynamo saturation time-scales are dependent on the magnetic Reynolds number (Rm). In this work, we have carried out periodic box DNS of helically forced turbulence leading to a large-scale dynamo with two kinds of forcing function, an isotropic one based on that used in Pencil-Code and an anisotropic one based on Galloway-Proctor flows. We show that when the turbulence is forced anisotropically, the nonlinear (saturation) behaviour of the large-scale dynamo is only weakly dependent on Rm. In fact the magnetic helicity evolution on small and large scales in the anisotropic case is distinctly different from that in the isotropic case. This result possibly holds promise for the alleviation of important issues like catastrophic quenching.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3