Photometric determination of main-sequence binaries with Gaia

Author:

Wallace A L1ORCID

Affiliation:

1. School of Physics & Astronomy, Monash University , Victoria 3800 , Australia

Abstract

ABSTRACT Since its launch in 2013, the Gaia space telescope has provided precise measurements of the positions and magnitudes of over 1 billion stars. This has enabled extensive searches for stellar and substellar companions through astrometric and radial velocity measurements. However, these surveys require a prior knowledge of any unresolved companion affecting the results which can be identified using photometry. In this work, Gaia’s magnitude measurements are combined with near-infrared observations from the Two Micron All Sky Survey (2MASS) and Wide-field Infrared Survey Explorer (WISE) catalogues and simulation-based inference is applied to constrain astrophysical parameters and search for hidden companions. This method is first tested on simulated sets of binary stars before expanding to Gaia’s non-single star catalogue. Using this test, a region is identified on the H–R diagram in which the method is the most accurate and all Gaia sources within that region are analysed. This analysis reproduces a known anticorrelation between metallicity and binary fraction. Finally, the method is applied to the nearby star cluster M67 and, using previous studies of the metallicity distribution, it is possible to improve constraints on binary fraction. From this the binary fraction in the cluster is calculated to vary from 30 per cent in the outer cluster to 45 per cent near the core. This is found to be significantly higher the 23 per cent binary fraction calculated for the wider stellar neighbourhood.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaia DR3 detectability of unresolved binary systems;Astronomy & Astrophysics;2024-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3