Field-based physical inference from peculiar velocity tracers

Author:

Prideaux-Ghee James1ORCID,Leclercq Florent12ORCID,Lavaux Guilhem2ORCID,Heavens Alan1,Jasche Jens3

Affiliation:

1. Imperial Centre for Inference and Cosmology (ICIC) & Astrophysics Group, Imperial College , Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK

2. CNRS & Sorbonne Université , UMR 7095, Institut d’Astrophysique de Paris, 98 bis boulevard Arago, F-75014 Paris, France

3. The Oskar Klein Centre, Department of Physics, Stockholm University , Albanova University Center, SE-106 91 Stockholm, Sweden

Abstract

ABSTRACT We present a proof-of-concept Bayesian hierarchical modelling approach to reconstruct the initial cosmic matter density field constrained by peculiar velocity observations. Using a model for the gravitational evolution of dark matter to connect the initial conditions to late-time observations, it reconstructs the late-time density and velocity fields as natural byproducts. We implement this field-based physical inference approach by adapting the Bayesian Origin Reconstruction from Galaxies ($\small {\rm BORG}$) algorithm, which explores the high-dimensional posterior through the use of Hamiltonian Monte Carlo sampling. We test the self-consistency of the method using random sets of tracers, and assess its accuracy in a more complex scenario where peculiar velocity tracers are mock haloes drawn from $\small {\rm GADGET2}$ N-body simulations. We find that our framework self-consistently infers the initial conditions, density and velocity fields, and shows some robustness to model mis-specification. Compared with the approach of constrained Gaussian random fields/Wiener filtering, the hierarchical model produces more accurate final density and velocity field reconstructions. It also allows us to constrain the initial conditions by peculiar velocity observations, complementing in this aspect other field-based approaches based on alternative cosmological observables such as galaxy clustering or weak lensing.

Funder

Imperial College London

STFC

Agence Nationale de la Recherche

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3