Millimeter observational signatures of flares in magnetically arrested black hole accretion models

Author:

Jia HeORCID,Ripperda Bart123ORCID,Quataert Eliot1ORCID,White Christopher J13,Chatterjee Koushik45ORCID,Philippov Alexander6,Liska Matthew57

Affiliation:

1. Department of Astrophysical Sciences, Princeton University , Princeton, NJ 08544 , USA

2. School of Natural Sciences, Institute for Advanced Study , 1 Einstein Drive, Princeton, NJ 08540 , USA

3. Center for Computational Astrophysics, Flatiron Institute , 162 Fifth Avenue, New York, NY 10010 , USA

4. Black Hole Initiative, Harvard University , 20 Garden Street, Cambridge, MA 02138 , USA

5. Center for Astrophysics, Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138 , USA

6. Department of Physics, University of Maryland , College Park, MD 20742 , USA

7. Institute for Theory and Computation, Harvard University , 60 Garden Street, Cambridge, MA 02138 , USA

Abstract

ABSTRACT In general relativistic magnetohydrodynamic (GRMHD) simulations, accreted magnetic flux on the black hole horizon episodically decays, during which magnetic reconnection heats up the plasma near the horizon, potentially powering high-energy flares like those observed in M87* and Sgr A*. We study the mm observational counterparts of such flaring episodes in very high resolution GRMHD simulations. The change in 230 GHz flux during the expected high energy flares depends primarily on the efficiency of accelerating γ ≳ 100 (Te ≳ 1011 K) electrons. For models in which the electrons are heated to Te ∼ 1011 K during flares, the hot plasma produced by reconnection significantly enhances 230 GHz emission and increases the size of the 230 GHz image. By contrast, for models in which the electrons are heated to higher temperatures (which we argue are better motivated), the reconnection-heated plasma is too hot to produce significant 230 GHz synchrotron emission, and the 230 GHz flux decreases during high energy flares. We do not find a significant change in the mm polarization during flares as long as the emission is Faraday thin. We also present expectations for the ring-shaped image as observed by the Event Horizon Telescope during flares, as well as multiwavelength synchrotron spectra. Our results highlight several limitations of standard post-processing prescriptions for the electron temperature in GRMHD simulations. We also discuss the implications of our results for current and future observations of flares in Sgr A*, M87*, and related systems. Appendices contain detailed convergence studies with respect to resolution and plasma magnetization.

Funder

Simons Foundation

U.S. Department of Energy

NASA

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3