Dark matter heating of gas accreting onto Sgr A*

Author:

Bennewitz Elizabeth R1,Gaidau Cristian2,Baumgarte Thomas W1,Shapiro Stuart L23

Affiliation:

1. Department of Physics and Astronomy, Bowdoin College, Brunswick, ME 04011, USA

2. Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

3. Department of Astronomy and NCSA, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

ABSTRACT We study effects of heating by dark matter (DM) annihilation on black hole gas accretion. We observe that, for reasonable assumptions about DM densities in spikes around supermassive black holes, as well as DM masses and annihilation cross-sections within the standard WIMP model, heating by DM annihilation may have an appreciable effect on the accretion on to Sgr A* in the Galactic Centre. Motivated by this observation we study the effects of such heating on Bondi accretion, i.e. spherically symmetric, steady-state Newtonian accretion on to a black hole. We consider different adiabatic indices for the gas, and different power-law exponents for the DM density profile. We find that typical transonic solutions with heating have a significantly reduced accretion rate. However, for many plausible parameters, transonic solutions do not exist, suggesting a breakdown of the underlying assumptions of steady-state Bondi accretion. Our findings indicate that heating by DM annihilation may play an important role in the accretion onto supermassive black holes at the centre of galaxies, and may help explain the low accretion rate observed for Sgr A*.

Funder

National Science Foundation

National Aeronautics and Space Administration

University of Illinois at Urbana-Champaign

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3