Testing 2D temperature models in Bayesian retrievals of atmospheric properties from hot Jupiter phase curves

Author:

Yang Jingxuan1ORCID,Irwin Patrick G J1ORCID,Barstow Joanna K2ORCID

Affiliation:

1. Department of Physics, University of Oxford , Parks Road, Oxford OX1 3PU , UK

2. School of Physical Sciences, The Open University , Walton Hall, Milton Keynes MK7 6AA , UK

Abstract

ABSTRACT Spectroscopic phase curves of transiting hot Jupiters are spectral measurements at multiple orbital phases, giving a set of disc-averaged spectra that probe multiple hemispheres. By fitting model phase curves to observations, we can constrain the atmospheric properties of hot Jupiters, such as molecular abundance, aerosol distribution, and thermal structure, which offer insights into their atmospheric dynamics, chemistry, and formation. We propose a novel 2D temperature parametrization consisting of a dayside and a nightside to retrieve information from near-infrared phase curves and apply the method to phase curves of WASP-43b observed by HST/Wide Field Camera 3 and Spitzer/Infra-Red Array Camera. In our scheme, the temperature is constant on isobars on the nightside and varies with cosn(longitude/ϵ) on isobars on the dayside, where n and ϵ are free parameters. We fit all orbital phases simultaneously using the radiative transfer package nemesispy coupled to a Bayesian inference code. We first validate the performance of our retrieval scheme with synthetic phase curves generated from a Global Circulation Model and find that our 2D scheme can accurately retrieve the latitudinally averaged thermal structure and constrain the abundance of H2O and CH4. We then apply our 2D scheme to the observed phase curves of WASP-43b and find: (1) The dayside temperature–pressure profiles do not vary strongly with longitude and are non-inverted. (2) The retrieved nightside temperatures are extremely low, suggesting significant nightside cloud coverage. (3) The H2O volume mixing ratio is constrained to 5.6 × 10−5–4.0 × 10−4, and we retrieve an upper bound for CH4 mixing ratio at ∼10−6.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics and clouds in planetary atmospheres from telescopic observations;The Astronomy and Astrophysics Review;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3