Using Gaia DR2 to make a systematic comparison between two geometric distortion solutions

Author:

Zheng Z J12,Peng Q Y1,Lin F R1

Affiliation:

1. Sino-French Joint Laboratory for Astrometry, Dynamics and Space Science, Jinan University, Guangzhou 510632, China

2. College of Computer, Guangdong University of Petrochemical Technology, Maoming 525000, China

Abstract

ABSTRACT Gaia Data Release 2 (Gaia DR2) provides high accuracy and precision astrometric parameters (position, parallax, and proper motion) for more than 1 billion sources and is revolutionizing astrometry. For a fast-moving target such as an asteroid, with many stars in the field of view that are brighter than the faint limit magnitude of Gaia (21 Gmag), its measurement accuracy and precision can be greatly improved by taking advantage of Gaia reference stars. However, if we want to study the relative motions of cluster members, we could cross-match them in different epochs based on pixel positions. For both types of targets, the determination of optical field-angle distortion or called geometric distortion (GD) in this paper is important for image calibration especially when there are few reference stars to build a high-order plate model. For the former, the GD solution can be derived based on the astrometric catalogue’s position, while for the latter, a reference system called ‘master frame’ is constructed from these observations in pixel coordinates, and then the GD solution is derived. But, are the two GD solutions in agreement with each other? In this paper, two types of GD solutions, which are derived either from the Gaia DR2 catalogue or from the self-constructed master frame, are applied respectively for the observations taken by 1-m telescope at Yunnan Observatory. It is found that two GD solutions enable the precision to achieve a comparable level (∼10 mas) but their GD patterns are different. Synthetic distorted positions are generated for further investigation into the discrepancy between the two GD solutions. We aim to find the correlation and distinction between the two types of GD solutions and their applicability in high precision astrometry.

Funder

National Natural Science Foundation of China

CAS

Fundamental Research Fund for the Central Universities

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3