Constraints on ultra-low-frequency gravitational waves from an eccentric supermassive black hole binary

Author:

Kikunaga Tomonosuke1ORCID,Hisano Shinnosuke1,Kumamoto Hiroki1,Takahashi Keitaro123

Affiliation:

1. Kumamoto University, Graduate School of Science and Technology, Kumamoto 860-8555, Japan

2. Kumamoto University, International Research Organization for Advanced Science and Technology, Kumamoto 860-8555, Japan

3. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

Abstract

ABSTRACT Millisecond pulsars with highly stable periods can be considered as very precise clocks and can be used for pulsar timing arrays (PTAs), which attempt to detect nanohertz gravitational waves (GWs) directly. The main sources of nanohertz GWs are supermassive black hole (SMBH) binaries with sub-parsec-scale orbits. On the other hand, an SMBH binary in an earlier phase with a parsec-scale orbit emits ultra-low-frequency ($\lesssim 10^{-9}\, \mathrm{Hz}$) GWs and cannot be detected with the conventional PTA methodology. Such binaries tend to attain high eccentricity, possibly ∼0.9. In this paper, we develop a formalism for extending the constraints on GW amplitudes from single sources obtained by PTAs toward ultra-low frequencies considering the waveform expected from an eccentric SMBH binary. GWs from eccentric binaries are contributed from higher harmonics and therefore have a different waveform to those from circular binaries. Furthermore, we apply our formalism to several hypothetical SMBH binaries at the centre of nearby galaxies, including M87, using the constraints from NANOGrav’s 11-yr data set. For a hypothetical SMBH binary at the centre of M87, the typical upper limit on the mass ratio is 0.16 for an eccentricity of 0.9 and a semimajor axis of a = 1 pc, assuming the binary phase to be the pericentre.

Funder

JSPS

ISM

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3