Daytime optical turbulence profiling with a profiler of the differential solar limb

Author:

Song Tengfei12ORCID,Cai Zhanchuan13,Liu Yu24,Zhao Mingyu2,Fang Yuliang5,Zhang Xuefei2,Wang Jingxing2,Li Xiaobo2,Song Qiwu6,Du Zhimao7

Affiliation:

1. State Key Laboratory of Lunar and Planetary Science, Macau University of Science and Technology, Macau 999078, China

2. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China

3. Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China

6. Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China

7. Shanghai Science and Technology Museum, Shanghai 200127, China

Abstract

ABSTRACT Atmospheric turbulence reduces the image quality and resolution of ground-based optical telescopes. Future large solar telescopes (e.g. the CGST, China Giant Solar Telescope) should be equipped with adaptive optics (AO) systems. The design of AO systems is associated with atmospheric optical turbulence parameters, especially the profile of the refractive index structure $C_{n}^{2}(h)$. With the solar differential image motion monitor (S-DIMM) and the profiler of the moon limb (PML), a simplified version of a PML, termed a profiler of the differential solar limb (PDSL), was built in order to determine the daytime $C_{n}^{2}(h)$ and other atmospheric turbulence parameters. A PDSL with differential solar limb fluctuations was used to determine the turbulence profiling, and the extended solar limb extends the range of separation angles for a higher resolution of the height profile. The PDSL structure and its performance are described. In addition, numerical simulations were conducted to verify the effectiveness of the method. As revealed from the simulation results, the layered integral coefficient matrix is capable of solving the discretization error and enhancing the inversion accuracy of the turbulence contour. The first test results at Mt Wumingshan (a candidate site for the CGST) are presented.

Funder

National Natural Science Foundation of China

Science and Technology Development Fund

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3