An optimal non-linear method for simulating relic neutrinos

Author:

Elbers Willem1ORCID,Frenk Carlos S1,Jenkins Adrian1ORCID,Li Baojiu1ORCID,Pascoli Silvia2

Affiliation:

1. Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

2. Institute for Particle Physics Phenomenology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

Abstract

ABSTRACT Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum by a factor of $\mathcal {O}\left(10^2\right)$ at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a consistent exploration of the full neutrino parameter space.

Funder

European Research Council

Horizon 2020

STFC

Durham University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ray-tracing versus Born approximation in full-sky weak lensing simulations of the MillenniumTNG project;Monthly Notices of the Royal Astronomical Society;2024-08-23

2. The FLAMINGO project: galaxy clusters in comparison to X-ray observations;Monthly Notices of the Royal Astronomical Society;2024-06-12

3. SUNBIRD: a simulation-based model for full-shape density-split clustering;Monthly Notices of the Royal Astronomical Society;2024-06-05

4. Swift : a modern highly parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications;Monthly Notices of the Royal Astronomical Society;2024-03-29

5. Cosmic-Eν: An- emulator for the non-linear neutrino power spectrum;Monthly Notices of the Royal Astronomical Society;2024-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3