Lessons learned from the two largest Galaxy morphological classification catalogues built by convolutional neural networks

Author:

Cheng T-Y1ORCID,Domínguez Sánchez H23,Vega-Ferrero J4ORCID,Conselice C J5,Siudek M36ORCID,Aragón-Salamanca A7ORCID,Bernardi M8,Cooke R1ORCID,Ferreira L7,Huertas-Company M49ORCID,Krywult J10,Palmese A11ORCID,Pieres A1213ORCID,Plazas Malagón A A14ORCID,Carnero Rosell A31215ORCID,Gruen D16,Thomas D17ORCID,Bacon D17,Brooks D18,James D J19,Hollowood D L20ORCID,Friedel D21,Suchyta E22ORCID,Sanchez E23,Menanteau F2124,Paz-Chinchón F2125,Gutierrez G26,Tarle G27,Sevilla-Noarbe I23,Ferrero I28ORCID,Annis J26,Frieman J2629,García-Bellido J30ORCID,Mena-Fernández J23,Honscheid K3132,Kuehn K3334,da Costa L N12,Gatti M8,Raveri M8,Pereira M E S35,Rodriguez-Monroy M23,Smith M36ORCID,Carrasco Kind M2124ORCID,Aguena M12ORCID,Swanson M E C,Weaverdyck N2737ORCID,Doel P18,Miquel R638,Ogando R L C13ORCID,Gruendl R A2124,Allam S26,Hinton S R39ORCID,Dodelson S4041,Bocquet S16,Desai S42,Everett S43,Scarpine V26

Affiliation:

1. Centre for Extragalactic Astronomy, Durham University , South Road, Durham DH1 3LE, UK

2. Centro de Estudios de Física del Cosmos de Aragón (CEFCA) , äPlaza de San Juan, 1, E-44001 Teruel, Spain

3. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans , s/n, E-08193 Barcelona, Spain

4. Instituto de Astrofíisica de Canarias (IAC) La Laguna , E-38205, Spain

5. Jodrell Bank Centre for Astrophysics, University of Manchester , Oxford Road, Manchester M13 9PL, UK

6. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology , E-08193 Bellaterra (Barcelona), Spain

7. School of Physics and Astronomy, University of Nottingham , University Park, Nottingham NG7 2RD, UK

8. Department of Physics and Astronomy, University of Pennsylvania , Philadelphia, PA 19104, USA

9. LERMA, Observatoire de Paris, CNRS, PSL, Université Paris Diderot , France

10. Institute of Physics, Jan Kochanowski University , ul. Uniwersytecka 7, PL-25-406 Kielce, Poland

11. Department of Physics, University of California Berkeley , 366 LeConte Hall MC 7300, Berkeley, CA, 94720, USA

12. Laboratório Interinstitucional de e-Astronomia - LIneA , Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

13. Observatório Nacional , Rua Gal. José Cristino 77, Rio de Janeiro, RJ - 20921-400, Brazil

14. Department of Astrophysical Sciences, Princeton University , Peyton Hall, Princeton, NJ 08544, USA

15. Universidad de La Laguna, Dpto. Astrofísica , E-38206 La Laguna, Tenerife, Spain

16. University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität , Scheinerstr. 1, D-81679 Munich, Germany

17. Institute of Cosmology and Gravitation, University of Portsmouth , Portsmouth PO1 3FX, UK

18. Department of Physics & Astronomy, University College London , Gower Street, London WC1E 6BT, UK

19. Center for Astrophysics | Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138, USA

20. Santa Cruz Institute for Particle Physics , Santa Cruz, CA 95064, USA

21. Center for Astrophysical Surveys, National Center for Supercomputing Applications , 1205 West Clark St., Urbana, IL 61801, USA

22. Computer Science and Mathematics Division, Oak Ridge National Laboratory , Oak Ridge, TN 37831, USA

23. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , Madrid, 28040, Spain

24. Department of Astronomy, University of Illinois at Urbana-Champaign , 1002 W. Green Street, Urbana, IL 61801, USA

25. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK

26. Fermi National Accelerator Laboratory , PO Box 500, Batavia, IL 60510, USA

27. Department of Physics, University of Michigan , Ann Arbor, MI 48109, USA

28. Institute of Theoretical Astrophysics, University of Oslo , PO Box 1029 Blindern, NO-0315 Oslo, Norway

29. Kavli Institute for Cosmological Physics, University of Chicago , Chicago, IL 60637, USA

30. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid , E-28049 Madrid, Spain

31. Center for Cosmology and Astro-Particle Physics, The Ohio State University , Columbus, OH 43210, USA

32. Department of Physics, The Ohio State University , Columbus, OH 43210, USA

33. Australian Astronomical Optics, Macquarie University , North Ryde, NSW 2113, Australia

34. Lowell Observatory , 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA

35. Hamburger Sternwarte, Universität Hamburg , Gojenbergsweg 112, D-21029 Hamburg, Germany

36. School of Physics and Astronomy, University of Southampton , Southampton SO17 1BJ, UK

37. Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, CA 94720, USA

38. Institució Catalana de Recerca i Estudis Avançats , E-08010 Barcelona, Spain

39. School of Mathematics and Physics, University of Queensland , Brisbane, QLD 4072, Australia

40. Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15312, USA

41. NSF AI Planning Institute for Physics of the Future, Carnegie Mellon University , Pittsburgh, PA 15213, USA

42. Department of Physics , IIT Hyderabad, Kandi, Telangana 502285, India

43. Jet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Dr., Pasadena, CA 91109, USA

Abstract

ABSTRACT We compare the two largest galaxy morphology catalogues, which separate early- and late-type galaxies at intermediate redshift. The two catalogues were built by applying supervised deep learning (convolutional neural networks, CNNs) to the Dark Energy Survey data down to a magnitude limit of ∼21 mag. The methodologies used for the construction of the catalogues include differences such as the cutout sizes, the labels used for training, and the input to the CNN – monochromatic images versus gri-band normalized images. In addition, one catalogue is trained using bright galaxies observed with DES (i < 18), while the other is trained with bright galaxies (r < 17.5) and ‘emulated’ galaxies up to r-band magnitude 22.5. Despite the different approaches, the agreement between the two catalogues is excellent up to i < 19, demonstrating that CNN predictions are reliable for samples at least one magnitude fainter than the training sample limit. It also shows that morphological classifications based on monochromatic images are comparable to those based on gri-band images, at least in the bright regime. At fainter magnitudes, i > 19, the overall agreement is good (∼95 per cent), but is mostly driven by the large spiral fraction in the two catalogues. In contrast, the agreement within the elliptical population is not as good, especially at faint magnitudes. By studying the mismatched cases, we are able to identify lenticular galaxies (at least up to i < 19), which are difficult to distinguish using standard classification approaches. The synergy of both catalogues provides an unique opportunity to select a population of unusual galaxies.

Funder

STFC

Royal Society

Durham University

AEI

Spanish Ministry of Science and Innovation

Polish National Agency for Academic Exchange

U.S. Department of Energy

National Science Foundation

Science and Technology Facilities Council

Higher Education Funding Council for England

National Center for Supercomputing Applications

Financiadora de Estudos e Projetos

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Ministério da Ciência, Tecnologia e Inovação

Deutsche Forschungsgemeinschaft

MINECO

ERDF

European Union

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3