Modelling spin evolution of magnetars

Author:

Jawor Jedrzej A1,Tauris Thomas M1ORCID

Affiliation:

1. Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark

Abstract

ABSTRACT The origin and fate of magnetars [young, extremely magnetized neutron stars (NSs)] remains unsolved. Probing their evolution is therefore crucial for investigating possible links to other species of isolated NSs, such as the X-ray dim NSs (XDINSs) and rotating radio transients (RRATs). Here, we investigate the spin evolution of magnetars. Two avenues of evolution are considered: one with exponentially decaying B-fields, the other with sub- and superexponential decay. Using Monte Carlo methods, we synthesize magnetar populations using different input distributions and physical parameters, such as for the initial spin period, its time derivative, and the B-field decay time-scale. Additionally, we introduce a fade-away procedure that can account for the fading of old magnetars, and we briefly discuss the effect of alignment of the B-field and spin axes. Imposing the Galactic core-collapse supernova rate of ∼20 kyr−1 as a strict upper limit on the magnetar birthrate and comparing the synthetic populations to the observed one using both manual and automatic optimization algorithms for our input parameter study, we find that the B-field must decay exponentially or superexponentially with a characteristic decay time-scale of 0.5−10 kyr (with a best value of ∼4 kyr). In addition, the initial spin period must be less than 2 s. If these constraints are kept, we conclude that there are multiple choices of input physics that can reproduce the observed magnetar population reasonably well. We also conclude that magnetars may well be evolutionary linked to the population of XDINSs, whereas they are in general unlikely to evolve into RRATs.

Funder

IFA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3