Optical darkness in short-duration γ-ray bursts

Author:

Gobat Caden12ORCID,van der Horst Alexander J1ORCID,Fitzpatrick David34

Affiliation:

1. Department of Physics, George Washington University , 725 21st Street NW, Washington, DC 20052, USA

2. Department of Space Operations, Southwest Research Institute , 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA

3. Department of Aerospace Engineering Sciences, University of Colorado Boulder , 3775 Discovery Dr, Boulder, CO 80303, USA

4. Department of Physics, Georgetown University , 37th & O Street NW, Washington, DC 20007, USA

Abstract

ABSTRACT Gamma-ray bursts (GRBs) categorically produce broad-band afterglow emission, but in some cases, emission in the optical band is dimmer than expected based on the contemporaneously observed X-ray flux. This phenomenon, aptly dubbed ‘optical darkness’, has been studied extensively in long GRBs (associated with the explosive deaths of massive stars), with possible explanations ranging from host environment extinction to high redshift to possibly unique emission mechanisms. However, investigations into optical darkness in short GRBs (associated with the mergers of compact object binaries) have thus far been limited. This work implements a procedure for determining the darkness of GRBs based on spectral indices calculated using temporally matched Swift–X-ray Telescope data and optical follow-up observations; presents a complete and up-to-date catalogue of known short GRBs that exhibit optical darkness; and outlines some of the possible explanations for optically dark short GRBs. In the process of this analysis, we developed versatile and scalable data processing code that facilitates reproducibility and reuse of our pipeline. These analysis tools and resulting complete sample of dark short GRBs enable a systematic statistical study of the phenomenon and its origins, and reveal that optical darkness is indeed quite rare in short GRBs, and highly dependent on observing response time and observational effects.

Funder

MINECO

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3