One simulation to have them all: performance of the Bias Assignment Method against N-body simulations

Author:

Balaguera-Antolínez A12,Kitaura Francisco-Shu12,Pellejero-Ibáñez M3,Lippich Martha4,Zhao Cheng5,Sánchez Ariel G4,Vecchia Claudio Dalla12,Angulo Raúl E36,Crocce Martín7ORCID

Affiliation:

1. Instituto de Astrofísica de Canarias, s/n, E-38205, La Laguna, Tenerife, Spain

2. Departamento de Astrofísica, Universidad de La Laguna, E-38206, La Laguna, Tenerife, Spain

3. Donostia International Physics Centre (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain

4. Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany

5. Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland

6. IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain

7. Institut de Ciéncies de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, 08193 Bellaterra, Barcelona, Spain

Abstract

Abstract In this paper we demonstrate that the information encoded in one single (sufficiently large) N-body simulation can be used to reproduce arbitrary numbers of halo catalogues, using approximated realisations of dark matter density fields with different initial conditions. To this end we use as a reference one realisation (from an ensemble of 300) of the Minerva N-body simulations and the recently published Bias Assignment Method to extract the local and non-local bias linking the halo to the dark matter distribution. We use an approximate (and fast) gravity solver to generate 300 dark matter density fields from the down-sampled initial conditions of the reference simulation and sample each of these fields using the halo-bias and a kernel, both calibrated from the arbitrarily chosen realisation of the reference simulation. We show that the power spectrum, its variance and the three-point statistics are reproduced within $\sim 2\%$ (up to k ∼ 1.0 h Mpc−1), $\sim 5-10\%$ and $\sim 10\%$, respectively. Using a model for the real space power spectrum (with three free bias parameters), we show that the covariance matrices obtained from our procedure lead to parameter uncertainties that are compatible within $\sim 10\%$ with respect to those derived from the reference covariance matrix, and motivate approaches that can help to reduce these differences to $\sim 1\%$. Our method has the potential to learn from one simulation with moderate volumes and high-mass resolution and extrapolate the information of the bias and the kernel to larger volumes, making it ideal for the construction of mock catalogues for present and forthcoming observational campaigns such as Euclid or DESI.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The hierarchical cosmic web and assembly bias;Journal of Cosmology and Astroparticle Physics;2024-07-01

2. Secondary halo bias through cosmic time;Astronomy & Astrophysics;2024-05

3. Mass reconstruction and noise reduction with cosmic-web environments;Monthly Notices of the Royal Astronomical Society;2024-04-13

4. Rapid evolution of the recurrence time in the repeating partial tidal disruption event eRASSt J045650.3−203750;Astronomy & Astrophysics;2024-03

5. Hybrid bias and displacement emulators for field-level modelling of galaxy clustering in real and redshift space;Monthly Notices of the Royal Astronomical Society;2024-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3