zELDA: fitting Lyman alpha line profiles using deep learning

Author:

Gurung-López Siddhartha1234ORCID,Gronke Max5ORCID,Saito Shun36ORCID,Bonoli Silvia7,Orsi Álvaro A8

Affiliation:

1. Observatori Astronòmic, Universitat de València, C/ Catedrático José Beltran, 2, E-46980 Paterna (València), Spain

2. Departament d’Astronomia i Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain

3. Institute for Multi-messenger Astrophysics and Cosmology, Department of Physics, Missouri University of Science and Technology, 1315 N. Pine St., Rolla, MO 65409, USA

4. Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan 1, piso 2, E-44001 Teruel, Spain

5. Department of Physics & Astronomy, Johns Hopkins University, Bloomberg Center, 3400 N. Charles St., Baltimore, MD 21218, USA

6. Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

7. DIPC, Manuel Lardizabal Ibilbidea, 4, E-20018 San Sebastian, Spain

8. PlantTech Research Institute Limited. South British House, 4th Floor, 35 Grey Street, Tauranga 3110, New Zealand

Abstract

ABSTRACT We present zELDA (redshift Estimator for Line profiles of Distant Lyman Alpha emitters), an open source code to fit Lyman α (Ly α) line profiles. The main motivation is to provide the community with an easy to use and fast tool to analyse Ly α line profiles uniformly to improve the understating of Ly α emitting galaxies. zELDA is based on line profiles of the commonly used ‘shell-model’ pre-computed with the full Monte Carlo radiative transfer code LyaRT. Via interpolation between these spectra and the addition of noise, we assemble a suite of realistic Ly α spectra which we use to train a deep neural network.We show that the neural network can predict the model parameters to high accuracy (e.g. ≲ 0.34 dex H i column density for R ∼ 12 000) and thus allows for a significant speedup over existing fitting methods. As a proof of concept, we demonstrate the potential of zELDA by fitting 97 observed Ly α line profiles from the LASD data base. Comparing the fitted value with the measured systemic redshift of these sources, we find that Ly α determines their rest frame Ly α wavelength with a remarkable good accuracy of ∼0.3 Å ($\sim 75\,\, {\rm km\, s}^{-1}$). Comparing the predicted outflow properties and the observed Ly α luminosity and equivalent width, we find several possible trends. For example, we find an anticorrelation between the Ly α luminosity and the outflow neutral hydrogen column density, which might be explained by the radiative transfer process within galaxies.

Funder

Generalitat Valenciana

MINECO

FEDER

Spanish Ministerio de Economia y Competividad

MEXT

MIAPP

Deutsche Forschungsgemeinschaft

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3