EDGE: the shape of dark matter haloes in the faintest galaxies

Author:

Orkney Matthew D A123ORCID,Taylor Ethan1,Read Justin I1ORCID,Rey Martin P4ORCID,Pontzen A5,Agertz Oscar6ORCID,Kim Stacy Y1,Delorme Maxime7

Affiliation:

1. Department of Physics, University of Surrey , Guildford GU2 7XH , UK

2. Institut de Ciències del Cosmos (ICCUB) , Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona , Spain

3. Institut d’Estudis Espacials de Catalunya (IEEC) , E-08034 Barcelona , Spain

4. Sub-department of Astrophysics, University of Oxford , Keble Road, Oxford OX1 3RH , UK

5. Department of Physics and Astronomy, University College London , London WC1E 6BT , UK

6. Lund Observatory, Division of Astrophysics, Department of Physics, Lund University , Box 43, SE-221 00 Lund , Sweden

7. Département d’Astrophysique/AIM , CEA/IRFU, CNRS/INSU, Université Paris-Saclay , F-91191 Gif-Sur-Yvette , France

Abstract

ABSTRACT Collisionless dark matter only (DMO) structure formation simulations predict that dark matter (DM) haloes are prolate in their centres and triaxial towards their outskirts. The addition of gas condensation transforms the central DM shape to be rounder and more oblate. It is not clear, however, whether such shape transformations occur in ‘ultra-faint’ dwarfs, which have extremely low baryon fractions. We present the first study of the shape and velocity anisotropy of ultra-faint dwarf galaxies that have gas mass fractions of fgas(r < Rhalf) < 0.06. These dwarfs are drawn from the Engineering Dwarfs at Galaxy formation’s Edge (EDGE) project, using high-resolution simulations that allow us to resolve DM halo shapes within the half-light radius (∼100 pc). We show that gas-poor ultra-faints (M200c ≤ 1.5 × 109 M⊙; fgas < 10−5) retain their pristine prolate DM halo shape even when gas, star formation, and feedback are included. This could provide a new and robust test of DM models. By contrast, gas-rich ultra-faints (M200c > 3 × 109 M⊙; fgas > 10−4) become rounder and more oblate within ∼10 half-light radii. Finally, we find that most of our simulated dwarfs have significant radial velocity anisotropy that rises to $\tilde{\beta } \gt 0.5$ at R ≳ 3Rhalf. The one exception is a dwarf that forms a rotating gas/stellar disc because of a planar, major merger. Such strong anisotropy should be taken into account when building mass models of gas-poor ultra-faints.

Funder

UKRI

Science and Technology Facilities Council

European Research Council

Knut and Alice Wallenberg Foundation

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3