Reproducing submillimetre galaxy number counts with cosmological hydrodynamic simulations

Author:

Lovell Christopher C1ORCID,Geach James E1ORCID,Davé Romeel234ORCID,Narayanan Desika567ORCID,Li Qi5ORCID

Affiliation:

1. Centre for Astrophysics Research, School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield AL10 9AB, UK

2. Institute for Astronomy, Royal Observatory, University of Edinburgh, Edinburgh EH9 3HJ, UK

3. University of the Western Cape, Bellville, Cape Town 7535, South Africa

4. South African Astronomical Observatories, Observatory, Cape Town 7925, South Africa

5. Department of Astronomy, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611, USA

6. University of Florida Informatics Institute, 432 Newell Drive, CISE Bldg E251, Gainesville, FL 32611, USA

7. Cosmic Dawn Center, Niels Bohr Institute, University of Copenhagen and DTU-Space, Technical University of Denmark, Copenhagen, DK 2200, Denmark

Abstract

ABSTRACT Matching the number counts of high-z submillimetre-selected galaxies (SMGs) has been a long-standing problem for galaxy formation models. In this paper, we use 3D dust radiative transfer to model the submm emission from galaxies in the simba cosmological hydrodynamic simulations, and compare predictions to the latest single-dish observational constraints on the abundance of 850 μm-selected sources. We find good agreement with the shape of the integrated 850 μm luminosity function, and the normalization is within 0.25 dex at >3 mJy, unprecedented for a fully cosmological hydrodynamic simulation, along with good agreement in the redshift distribution of bright SMGs. The agreement is driven primarily by simba’s good match to infrared measures of the star formation rate (SFR) function between z = 2 and 4 at high SFRs. Also important is the self-consistent on-the-fly dust model in simba, which predicts, on average, higher dust masses (by up to a factor of 2.5) compared to using a fixed dust-to-metals ratio of 0.3. We construct a light-cone to investigate the effect of far-field blending, and find that 52 per cent of sources are blends of multiple components, which makes a small contribution to the normalization of the bright end of the number counts. We provide new fits to the 850 μm luminosity as a function of SFR and dust mass. Our results demonstrate that solutions to the discrepancy between submm counts in simulations and observations, such as a top-heavy initial mass function, are unnecessary, and that submillimetre-bright phases are a natural consequence of massive galaxy evolution.

Funder

Royal Society

Department for Business, Energy and Industrial Strategy, UK Government

Science and Technology Facilities Council

Durham University

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3