Hemispheric asymmetry in meridional flow and the sunspot cycle

Author:

Lekshmi B1ORCID,Nandy Dibyendu12ORCID,Antia H M3ORCID

Affiliation:

1. Center of Excellence in Space Sciences India, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India

2. Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India

3. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

Abstract

ABSTRACT Magnetohydrodynamic dynamo modelling shows that the large-scale solar meridional plasma flow plays an important role in governing the dynamics of the sunspot cycle. Observations indicate that meridional flow velocities at each solar latitude and depth vary over time and are asymmetric across the equator. Here, using helioseismic observations we explore the temporal variation in the hemispherical asymmetry of near-surface residual (time-varying) component of the Sun’s meridional flow velocity. The meridional flow velocities obtained from Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) ring-diagram pipelines are used in this work. Our data set covers the declining phase of cycle 23 and cycle 24 (from July 2001 till December 2018) and the flow velocities are poleward for the observed depth range. We observe a time delayed anticorrelation between the hemispherical asymmetry in near-surface meridional flow velocities and the sunspot cycle quantified in terms of magnetic flux and sunspot number. Interestingly, asymmetry in meridional flow velocity precedes the asymmetry in sunspot cycle by 3.1–3.5 yr. We propose that meridional flow asymmetry is a precursor of asymmetry in hemispherical cycle strength. The symmetric component of meridional flow is observed to be positively correlated with the corresponding symmetric components of the magnetic cycle, also with a time delay. Our analysis sets important constraints on theories for the origin of meridional plasma flow asymmetries and its temporal variations and is relevant for understanding the role of plasma flux transport processes in determining hemispheric asymmetry in the sunspot cycle.

Funder

Netherlands Space Office

National Oceanic and Atmospheric Administration

National Aeronautics and Space Administration

United States Air Force

Ministry of Human Resource Development

Indo-US Joint Center Programme

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3